
DO Qualification Kit

Model-Based Design Workflow for DO-178C

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

DO Qualification Kit Model-Based Design Workflow for DO-178C

© COPYRIGHT 2010–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2010 Online only New for Version 1.3 (Release 2010b)
April 2011 Online only Revised for Version 1.4 (Release 2011a)
September 2011 Online only Revised for Version 1.5 (Release 2011b)
March 2012 Online only Revised for Version 1.6 (Release 2012a)
September 2012 Online only Revised for Version 2.0 (Release 2012b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Tool Description

1
Overview of the Tools . 1-2

Independence of the Tools . 1-3

Model and Source Code Development and
Verification . 1-10

Potential Tool Errors and Detection 1-13

Object Code Development and Verification 1-18

Test Case Development . 1-20

DO-178C Software Life Cycle

2
DO-178C Software Life Cycle Overview 2-2

Model-Based Design Workflow in DO-178C 2-3

Software Planning Process . 2-5
Activities of the Software Lifecycle Processes are
Defined . 2-6

Software Life Cycle is Defined . 2-7
Software Life-Cycle Environment Is Selected and
Defined . 2-8

Additional Considerations are Addressed 2-8
Software Development Standards are Defined 2-8
Software Plans Comply with DO-178C 2-9

iii

Development and Revision of Software Plans are
Coordinated . 2-9

Software Development Process . 2-10
High-Level Requirements are Developed 2-13
Derived High-Level Requirements are Defined and
Provided to System Processes . 2-13

Software Architecture Is Developed 2-13
Low-Level Requirements are Developed 2-14
Derived Low-Level Requirements are Defined and Provided
to the System Processes . 2-14

Source Code Is Developed . 2-14
Executable Object Code and Parameter Data Item Files are
Produced and Loaded in the Target Computer 2-14

Specification Model Elements That Do Not Contribute
to Implementation or Realization of Any High-Level
Requirements are Identified . 2-15

Design Model Elements That Do Not Contribute to
Implementation or Realization of Any Software
Architecture are Identified . 2-15

Design Model Elements That Do Not Contribute to
Implementation or Realization of Any Low-Level
Requirements are Identified . 2-15

Verification of Requirements Process 2-17
High-Level Requirements Comply with System
Requirements . 2-19

High-Level Requirements Are Accurate and Consistent . . 2-19
High-Level Requirements Are Compatible withTarget
Computer . 2-20

High-Level Requirements Are Verifiable 2-20
High-Level Requirements Conform to Standards 2-21
High-Level Requirements Are Traceable to System
Requirements . 2-22

Algorithms Are Accurate . 2-22
Simulation Cases Are Correct . 2-23
Simulation Procedures Are Correct 2-23
Simulation Results Are Correct and Discrepancies
Explained . 2-23

Verification of Design Process . 2-24
Low-Level Requirements Comply with High-Level
Requirements . 2-26

iv Contents

Low-Level Requirements Are Accurate and Consistent . . . 2-27
Low-Level Requirements Are Compatible with Target
Computer . 2-28

Low-Level Requirements Are Verifiable 2-28
Low-Level Requirements Conform to Standards 2-29
Low-Level Requirements Are Traceable to High-Level
Requirements . 2-30

Algorithms Are Accurate . 2-30
Software Architecture Is Compatible with High-Level
Requirements . 2-31

Software Architecture Is Consistent 2-31
Software Architecture Is Compatible with Target
Computer . 2-32

Software Architecture Is Verifiable 2-32
Software Architecture Conforms to Standards 2-33
Software Partitioning Integrity Is Confirmed 2-33
Simulation Case Are Correct . 2-34
Simulation Procedures Are Correct 2-34
Simulation Results Are Correct and Discrepancies
Explained . 2-34

Verification of Coding and Integration Process 2-35
Source Code Complies with Low-Level Requirements 2-37
Source Code Complies with Software Architecture 2-37
Source Code Is Verifiable . 2-37
Source Code Conforms to Standards 2-38
Source Code Is Traceable to Low-Level Requirements 2-38
Source Code Is Accurate and Consistent 2-38
Output of Software Integration Process Is Complete and
Correct . 2-38

Parameter Data Item File Is Correct and Complete 2-39
Verification of Parameter Data Item File Is Achieved 2-39
Formal Analysis Cases and Procedures Are Correct 2-39
Formal Analysis Results Are Correct and Discrepancies
Explained . 2-39

Requirements Formalization Is Correct 2-39
Formal Method Is Correctly Justified and Appropriate . . . 2-39

Testing of Outputs of Integration Process 2-40
Executable Object Code Complies with High-Level
Requirements . 2-41

Executable Object Code Is Robust with High-Level
Requirements . 2-43

v

Executable Object Code Complies with Low-Level
Requirements . 2-44

Executable Object Code Is Robust with Low-Level
Requirements . 2-45

Executable Object Code Is Compatible with Target
Computer . 2-46

Verification of Verification Process Results 2-48
Test Procedures Are Correct . 2-51
Test Results Are Correct and Discrepancies Explained . . . 2-51
Test Coverage of High-Level Requirements Is Achieved . . 2-52
Test Coverage of Low-Level Requirements Is Achieved . . . 2-52
Test Coverage of Software Structure (Modified
Condition/Decision) Is Achieved . 2-52

Test Coverage of Software Structure (Decision Coverage) Is
Achieved . 2-53

Test Coverage of Software Structure (Statement Coverage)
Is Achieved . 2-53

Test Coverage of Software Structure (Data Coupling and
Control Coupling) Is Achieved . 2-53

Verification of Additional Code That Cannot Be Traced to
Source Code Is Achieved . 2-54

Simulation Cases Are Correct . 2-54
Simulation Procedures Are Correct 2-54
Simulation Results Are Correct and Discrepancies
Explained . 2-54

Formal Analysis Cases and Procedures Are Correct 2-55
Formal Analysis Results Are Correct and Discrepancies
Explained . 2-55

Coverage of High-Level Requirements Is Achieved 2-55
Coverage of Low-Level Requirements Is Achieved 2-55
Verification Coverage of Software Structure Is Achieved . . 2-55
Verification of Property Preservation Between Source And
Object Code . 2-55

Formal Method Is Correctly Justified And Appropriate . . . 2-56

Software Configuration Management Process 2-57
Configuration Items Are Identified 2-58
Baselines and Traceability Are Established 2-58
Problem Reporting, Change Control, Change Review, and
Configuration Status Accounting Are Established 2-59

Archive, Retrieval, and Release Are Established 2-59
Software Load Control Is Established 2-59

vi Contents

Software Life Cycle Environment Control Is Established . . 2-59

Software Quality Assurance Process 2-60
Assurance Is Obtained That Software Plans and Standards
are Developed and Reviewed for Compliance With
DO-178C and For Consistency . 2-61

Assurance is Obtained That Software Life Cycle Processes
Comply with Approved Software Plans 2-61

Assurance is Obtained That Software Life Cycle Processes
Comply with Approved Software Standards 2-61

Assurance is Obtained That Transition Criteria for the
Software Life Cycle Processes are Satisfied 2-62

Assurance is Obtained That Software Conformity Review is
Conducted . 2-62

Certification Liaison Process . 2-63
Communication and Understanding Between the Applicant
and the Certification Authority Is Established 2-63

The Means of Compliance Is Proposed and Agreement
with the Plan for Software Aspects of Certification is
Obtained . 2-64

Compliance Substantiation Is Provided 2-64

Acronyms

A
Acronyms . A-2

References

B
Normative References . B-2

vii

Index

viii Contents

1

Tool Description

• “Overview of the Tools” on page 1-2

• “Independence of the Tools” on page 1-3

• “Model and Source Code Development and Verification” on page 1-10

• “Potential Tool Errors and Detection” on page 1-13

• “Object Code Development and Verification” on page 1-18

• “Test Case Development” on page 1-20

1 Tool Description

Overview of the Tools
The purpose of this section is to describe the high level architecture of the
development and verification tools used in the DO-178C workflow with
Model-Based Design. This section also describes the independence aspects of
the various tools and how errors in the tools can be detected. There are two
types of tools used in the workflow, development tools and verification tools.

Development tools are:

• Simulink®

• Stateflow®

• MATLAB® Coder™

• Simulink Coder

• Embedded Coder®

Verification tools are:

• MATLAB Report Generator™

• Simulink Report Generator

• Simulink Design Verifier™

• Simulink Code Inspector™

• Simulink Verification and Validation™ - Model Advisor

• Simulink Verification and Validation - Model Coverage

• SystemTest™

• Polyspace®

1-2

Independence of the Tools

Independence of the Tools
Simulink and Stateflow are separate tools used for the development of
models. Simulink may be used without Stateflow, but when Stateflow is used,
Simulink is also required. Simulink and Stateflow are tightly integrated and
are not independent of each other. There is not a requirement for Simulink
and Stateflow to be independent since they are both used together as part
of the development of the software design. The Simulink API, which is
referenced throughout this document, provides an interface for other tools
that cannot access the in memory data directly, to get the data from the model
by using this interface. For example, a user can get data from a model using
the get_param command in MATLAB or set a parameter in the model using
the set_param command in MATLAB.

See the workflow section of this document, “Software Development Process”
on page 2-10, which includes the following objectives for the use of Simulink
and Stateflow:

• Software High-Level Requirements are Developed

• Derived Software High-Level Requirements are Developed

• Software Architecture is Developed

• Software Low-Level Requirements are Developed

• Derived Software Low-Level Requirements are Developed

MATLAB Coder, Simulink Coder and Embedded Coder are separate tools
used for the development of source code. MATLAB Coder is a prerequisite
for Simulink Coder and Embedded Coder. Simulink Coder is required when
generating code from Simulink and Stateflow models. These three tools are
tightly integrated and are not independent of each other. There is not a
requirement for MATLAB Coder, Simulink Coder and Embedded Coder to
be independent since they are used together as part of the development of
the source code. In the following sections of this document, references to
Embedded Coder are intended to include Simulink Coder and MATLAB Coder
as the entire code generation tool set.

See the workflow section of this document, “Software Development Process”
on page 2-10, which includes the following objectives for the use of MATLAB
Coder, Simulink Coder and Embedded Coder:

1-3

1 Tool Description

• Source Code is Developed

The MATLAB and Simulink Report Generators are two separate tools,
with the MATLAB Report Generator being a prerequisite for the Simulink
Report Generator. The Simulink Report Generator provides components
for reporting on Simulink and Stateflow models and is integrated with the
MATLAB Report Generator. These components interrogate the model using
the Simulink API to read data from the model loaded in memory. The report
generator components used to generate the System Design Description
document can only read data from the model, they do not have the capability
to write or modify data in the model. The System Design Description includes
requirements traceability links that may be inserted into the models using
the Requirements Management Interface that is part of Simulink Verification
and Validation.

See the workflow sections of this document, “Verification of Requirements
Process” on page 2-17 and “Verification of Design Process” on page 2-24, which
includes the following objectives for the use of MATLAB Report Generator
and Simulink Report Generator:

• Verification of Requirements Process

- Software High-Level Requirements Comply with System Requirements

- High-Level Requirements are Accurate and Consistent

- High-Level Requirements are Compatible with Target Computer

- High-Level Requirements are Verifiable

- High-Level Requirements Conform to Standards

- High-Level Requirements are Traceable to System Requirements

- Algorithms are Accurate

• Verification of Design Process

- Low-Level Requirements Comply with High-Level Requirements

- Low-Level Requirements are Accurate and Consistent

- Low-Level Requirements are Compatible with Target Computer

- Low-Level Requirements are Verifiable

1-4

Independence of the Tools

- Low-Level Requirements Conform to Standards

- Low-Level Requirements are Traceable to System Requirements

- Algorithms are Accurate

- Software Architecture is Compatible with High-Level Requirements

- Software Architecture is Consistent

- Software Architecture is Compatible with Target Computer

- Software Architecture is Verifiable

- Software Architecture is Conforms to Standards

Simulink Design Verifier is a separate tool with three capabilities; Design
Error Detection, Property Proving and Test Case Generation. Simulink
Design Verifier contains formal analysis engines that operate on an internal
representation derived from but in a different form than the Simulink model
loaded in memory. Design Error Detection can find specific design errors in
the model, such as divide-by-zero or numeric overflows, using formal methods.
Property Proving, which also uses formal methods, can prove properties that
are defined by the user in conjunction with assumptions that are also defined
by the user. The formal analysis engines are separate and independent of
Simulink and Stateflow, and do not involve simulation of the model. Simulink
Design Verifier can automatically generate test cases based on the model that
can be used to verify the executable object code complies with the model. The
basis for the test cases can be a combination of user defined constraints, model
coverage criteria for blocks in the model and user defined test objectives. The
constraint blocks, model coverage criteria and test objective blocks are ignored
by Embedded Coder and are therefore independent of the coding process. In
order to verify the code using the generated test cases, the test cases must
be run on the model in order to produce expected results for the code. The
completeness of those test cases may be assessed using the model coverage
tool and the expected results may be assessed via review of the results from
simulation.

See the workflow sections of this document, “Verification of Requirements
Process” on page 2-17, “Verification of Design Process” on page 2-24 and
“Testing of Outputs of Integration Process” on page 2-40, which includes the
following objectives for the use of Simulink Design Verifier:

1-5

1 Tool Description

• Verification of Requirements Process

- Software High-Level Requirements Comply with System Requirements

- High-Level Requirements are Verifiable

- Algorithms are Accurate

• Verification of Design Process

- Low-Level Requirements Comply with High-Level Requirements

- Low-Level Requirements are Verifiable

- Algorithms are Accurate

• Testing of Outputs of Integration Process

- Executable Object Code Complies with Low-Level Requirements

- Executable Object Code is Robust with Low-Level Requirements

Simulink Code Inspector is a separate tool that can be used to verify source
code developed from Embedded Coder. This tool is implemented independent
of Simulink, Stateflow and Embedded Coder. This tool interrogates the model
using the Simulink API to read data from the model loaded in memory. All of
the API commands used can only read data from the model, they do not have
the capability to write or modify data in the model. The model is converted
into a different intermediate representation for use in the code inspection
process. The Simulink Code Inspector also uses the generated C code files as
input and parses these into a different intermediate representation that can
be compared to the model’s intermediate representation. The requirements,
design and source code for Simulink Code Inspector are developed separately
and are independent of MATLAB Coder, Simulink Coder and Embedded
Coder implementations.

See the workflow section of this document, “Verification of Coding and
Integration Process” on page 2-35, which includes the following objectives for
the use of Simulink Code Inspector:

• Source Code Complies with Low-Level Requirements

• Source Code Complies with Software Architecture

• Source Code is Verifiable

1-6

Independence of the Tools

• Source Code is Traceable to Low-Level Requirements

• Source Code is Accurate and Consistent

The Model Advisor checks are provided in several different products; Simulink,
Embedded Coder, Simulink Code Inspector, Simulink Verification and
Validation and Simulink Control Design™. The basic core implementation
of Model Advisor checks is done via an engine that uses MATLAB functions
and is independent of Simulink, Stateflow and Embedded Coder. The Model
Advisor uses the Simulink API to read data from the model loaded in memory.
The Model Advisor does have the capability to automatically fix issues
detected by checks, but the fixes must be initiated by the user and the model
would have to be resaved. Then the checks can be re-run by the user in order
to verify the fixes. For custom checks created by the user, it is the user’s
responsibility to not allow those checks to modify the model.

See the workflow sections of this document, “Verification of Requirements
Process” on page 2-17 and “Verification of Design Process” on page 2-24, which
includes the following objectives for the use of Model Advisor:

• Verification of Requirements Process

- High-Level Requirements are Accurate and Consistent

- High-Level Requirements are Compatible with Target Computer

- High-Level Requirements Conform to Standards

- High-Level Requirements are Traceable to System Requirements

- Algorithms are Accurate

• Verification of Design Process

- Low-Level Requirements are Accurate and Consistent

- Low-Level Requirements are Compatible with Target Computer

- Low-Level Requirements Conform to Standards

- Low-Level Requirements are Traceable to System Requirements

- Algorithms are Accurate

- Software Architecture is Consistent

- Software Architecture is Compatible with Target Computer

1-7

1 Tool Description

- Software Architecture is Conforms to Standards

The Model Coverage capability is provided as part of Simulink Verification
and Validation. Model Coverage instruments the model loaded into memory
prior to simulation and evaluates the coverage criteria as the simulation
progresses. Model Coverage also has the capability to merge multiple
simulation runs into a combined coverage report. The user can run
simulations with coverage enabled and disabled to insure there has been no
effect on behavior of the model due to the instrumentation.

See the workflow sections of this document, “Verification of Requirements
Process” on page 2-17 and “Verification of Design Process” on page 2-24, which
includes the following objectives for the use of Model Coverage:

• Verification of Requirements Process

- Software High-Level Requirements Comply with System Requirements

- High-Level Requirements are Verifiable

• Verification of Design Process

- Low-Level Requirements Comply with High-Level Requirements

- Low-Level Requirements are Verifiable

SystemTest is a separate tool that can be used to execute simulations in
a batch model and check actual results against expected results. It also
provides the capability to author test cases manually or to import test cases
in other formats, such as Excel® spreadsheets. Because the test cases and
expected results are developed manually by the user, they are independent of
the model and source code. The Limit Check element within SystemTest that
is used to determine Pass/Fail of the model or code under test is implemented
completely independent of Simulink, Stateflow and Embedded Coder.

See the workflow sections of this document, “Verification of Requirements
Process” on page 2-17 and “Verification of Design Process” on page 2-24, which
includes the following objectives for the use of SystemTest:

• Verification of Requirements Process

- Software High-Level Requirements Comply with System Requirements

1-8

Independence of the Tools

- High-Level Requirements are Accurate and Consistent

- High-Level Requirements are Verifiable

- Algorithms are Accurate

• Verification of Design Process

- Low-Level Requirements Comply with High-Level Requirements

- Low-Level Requirements are Accurate and Consistent

- Low-Level Requirements are Verifiable

- Algorithms are Accurate

- Software Architecture is Compatible with High-Level Requirements

- Software Architecture is Consistent

- Software Architecture is Verifiable

Polyspace is a separate tool that has two capabilities; coding standards
checking (example MISRA C®) and run time error detection. The main
input to Polyspace is the source code; however it can optionally read range
specification data from the model using the Simulink API. When using
the Polyspace Model Link™ SL product, it can trace defects found in the
source code back to the source blocks in the model. Polyspace is completely
independent of MATLAB Coder, Simulink Coder and Embedded Coder. The
requirements, design and source code for Polyspace are developed separately
and are independent of MATLAB Coder, Simulink Coder and Embedded
Coder implementations. Polyspace also supports C code, whether it is
automatically generated or manually developed. For run-time error detection,
Polyspace uses Abstract Interpretation in its formal methods engine.

See the workflow section of this document, “Verification of Coding and
Integration Process” on page 2-35, which includes the following objectives for
the use of Polyspace:

• Source Code is Verifiable

• Source Code Conforms to Standards

• Source Code is Accurate and Consistent

1-9

1 Tool Description

Model and Source Code Development and Verification
In a workflow where code is generated from the Simulink and Stateflow
models, the models are considered to be the low-level software requirements
and architecture as defined in DO-178C. The actual low-level requirements
are the compiled model in memory as interpreted by the Simulink engine
based on input from the model file, as well as any data files, such as MATLAB
or MAT files that load data into the MATLAB or model workspaces. See
Figure 1: Model and Source Code Development and Verification on page 1-12.
The model file itself does not represent the low-level requirements, because
the model semantics are not fully included in that file. The model semantics
are not complete until the model file has been loaded into memory and the
Simulink engine has compiled the model. Some of the model semantics that
are determined at compile time, but are not included in the model file, for
the model consists of:

• Propagated Sample Times

• Propagated Data Types

• Propagated Signal Dimensions

• Propagated Signal Types

• Block Execution Order

The System Design Description, which is created using the Simulink Report
Generator, provides a document that details the compiled for simulation in
memory representation of the model. This provides documentation of the
low-level software requirements, as defined in the DO-178C glossary:

Low-level requirements – Software requirements developed from high-level
requirements, derived requirements, and design constraints from which Source
Code can be directly implemented without further information.1

Compile for simulation and compile for code generation are two different
compiles and result in two slightly different in-memory representations.
SystemTest, Model Coverage, Simulink Code Inspector, Model Advisor and
Report Generator only compile for simulation. Embedded Coder compiles for

1. “Software Considerations in Airborne Systems and Equipment Certification,” Document
No. RTCA DO-178C, December 13, 2011, Prepared by SC-205

1-10

Model and Source Code Development and Verification

code generation, which includes the entire compile for simulation information
plus the following additional information.

• Model optimizations that are applied only for code generation

• Consistency checking for storage classes in the generated code

Since the model and code verification activities may take place at different
times or on different computers, it is necessary to check the consistency of the
in-memory representations of the model. An MD5 Checksum computation is
used to check this consistency. The MD5 checksum is computed based on
the in-memory representation and includes any data that has been loaded
into the workspace from external files that are used by the model. The MD5
Checksum value is automatically inserted into the Model Advisor report,
the System Design Description and the Simulink Code Inspector report. It
is also possible to use the Simulink API to access the MD5 Checksum and
insert it into a SystemTest report or for use in other reports that may be
generated during simulations using other methods such as Report Generator
or MATLAB scripts. A model version number and last saved date are also
available in the reports, and this data is automatically updated each time
that a model is saved. The model version number and last saved dates are
not affected by externally loaded data, so that is why the MD5 Checksum is
required to verify complete consistency of the in-memory representation. The
System Design Description does document the workspace variables that are
used by the model at the time the report is generated.

1-11

1 Tool Description

Model
Development

Requirements Simulation
Cases Simulation

results
 report

Model
coverage

 report

Model
standards

 report

System
design

description
report

Code
inspection

 report

Code
standards

report

SystemTest

Simulink
Verification and

Validation - Model
advisor checks

Simulink Report
Generator -

System design
description report

Simulink
Verification and

Validation -
Model coverage

Simulink
Code

Inspector

Polyspace
Products
for C/C++

Simulink -
Modeling

engine

Simulink -
Execution

engine

Model
(in-memory

representation
compiled
for code

generation) Embedded
Coder

Model
Verification

Source Code
Development

Source Code
Verification

(Direct
memory
access)

(Direct memory access)

(Simulink
API)

Model
(file

representation
including

accompanying
files)

Model
(in-memory

representation
compiled

for simulation)

Source Code
(Figure 2)

Figure 1: Model and Source Code Development and Verification

1-12

Potential Tool Errors and Detection

Potential Tool Errors and Detection
The following table provides information regarding potential user and tool
errors, the effects of those errors and how the errors are detected.

Error Source Error Effect Detected By Mitigating
Factors

User Input
(model,
MATLAB, or
MAT file data)

Failure to
comply with
requirements

Simulation
Cases and review
of System Design
Description

SystemTest
and Report
Generator
Qualification

Failure to
conform to
standards

Model Advisor
and review of
System design
Description

Model Advisor
and Report
Generator
Qualification

Unintended
function

Review of
System Design
Description,
Simulation
Cases and Model
Coverage

SystemTest and
Model Coverage
Qualification

Simulink Engine Failure to
comply with
requirements

Simulation
Cases and review
of System Design
Description

SystemTest
and Report
Generator
Qualification

Failure to
conform to
standards

Model Advisor
and review of
System design
Description

Model Advisor
and Report
Generator
Qualification

Unintended
function

Review of
System Design
Description,
Simulation
Cases and Model
Coverage

SystemTest and
Model Coverage
Qualification

1-13

1 Tool Description

Error Source Error Effect Detected By Mitigating
Factors

Simulink
Execution
Engine

Failure to
comply with
requirements

Simulation
Cases

SystemTest
Qualification

Unintended
function

Simulation
Cases and Model
Coverage

SystemTest and
Model Coverage
Qualification

Simulink API Incorrect input
to Model Advisor
resulting in
reported failure

Review of Model
Advisor Report
and resolution
activity

Model Advisor
Qualification

Incorrect input
to System Design
Description

Review of
System Design
Description
and resolution
activity

Report
Generator
Qualification

Incorrect input
to Simulink
Code Inspector
resulting in
reported failure

Review of
Simulink Code
Inspector Report
and resolution
activity

Simulink Code
Inspector
Qualification

SystemTest Incorrect
expected results
evaluation
resulting in
reported failure

Review of
simulation
results report
and resolution
activity

SystemTest
Qualification

Model Coverage Incorrect
model coverage
reporting

Review of
coverage report
and additional
requirement for
code coverage
assessment

Model Coverage
Qualification

1-14

Potential Tool Errors and Detection

Error Source Error Effect Detected By Mitigating
Factors

Model Advisor Incorrect model
standards
reporting

Model standards
violation
resulting in a
corresponding
code standards
violation is
detectable by
Polyspace

Model Advisor
and Polyspace
Qualification

Report
Generator

Incorrect
System Design
Description

Review of
System Design
Description
and resolution
activity

Report
Generator
Qualification

Embedded Coder Incorrect source
code

Review of
Simulink Code
Inspector Report

Simulink Code
Inspector
Qualification

Simulink Code
Inspector

Incorrect
reported failure
of the source code

Review of
Simulink Code
Inspector Report
and resolution
activity

Simulink Code
Inspector
Qualification

Polyspace Incorrect
reported failure
of the source code

Review of
Polyspace Report
and resolution
activity

Polyspace
Qualification

The only errors that can directly affect both the model and the source code
are user input errors or Simulink Engine errors. In either of these cases the
result is incorrect low-level software requirements. The incorrect low-level
software requirements are detectable at the model level via a combination of
design reviews, simulation, model coverage assessment and conformance to
standards checking. Because these activities are being done on the compiled
in memory model, the detection is effective whether the error is based on user
input or the Simulink Engine. Additionally, if the software level is A or B, the

1-15

1 Tool Description

simulation cases used to verify behavior, must be developed by a person other
than the model developer in order to achieve independence requirements.

Once the model has been verified, the source code can be generated by
Embedded Coder and verified by Simulink Code Inspector and Polyspace. The
three tools are developed by independent groups with MathWorks and have
independent requirements and code. The one exception is that Simulink Code
Inspector and Polyspace do share a common parser function for the C code,
but Embedded Coder does not contain this functionality. The Simulink Code
Inspector uses the Simulink API as input source for the model information.
This is the same API used by Model Advisor and the Simulink Report
Generator. This API is verified during the tool qualification testing process
for each of these tools. The Simulink Code Inspector input from the model is
based on the compiled for simulation in memory representation and does not
have access to the compiled for code generation additional information. Both
Simulink Code Inspector and Polyspace read the code and header files that
are output from Embedded Coder directly as ASCII text files.

The following model verification tools may be qualified, per DO-178C
guidelines, using the DO Qualification Kit:

• Simulink Report Generator – System Design Description

• Simulink Verification and Validation Model Advisor – DO-178C/DO-331
Checks

• Simulink Verification and Validation Model Coverage – Coverage and
Complexity Reporting

• SystemTest – Limit Check Element

Additionally, the following code verification tools may be qualified, per
DO-178C guidelines, using the DO Qualification Kit:

• Simulink Code Inspector – Verification of compliance and traceability to
the model

• Polyspace – Conformance to standards and run-time error detection

To summarize, all tool errors in the workflow are detectable by one or more
verification activities. Additionally, the tool qualification process for the

1-16

Potential Tool Errors and Detection

verification tools provides a level of confidence in the tools that is equivalent
to manual verification activities that are automated by the tools.

1-17

1 Tool Description

Object Code Development and Verification
Figure 2: Executable Object Code Development and Verification on page 1-19
shows the Executable Object Code development and verification activities,
including the use of Processor In-The-Loop (PIL) mode and target integration
testing. These activities are downstream of the model and source code
development and verification activities. The compiler is a third party tool that
is not provided by MathWorks and therefore is independent. Errors injected
by the compiler are detectable by the testing process. The code coverage tool
is also provided by a third party, rather than MathWorks®, and this tool
is normally qualified.

1-18

Object Code Development and Verification

High-level
test cases
(Figure 3)

Code
coverage

report

EOC
test

results
 report

Code
coverage

tool

Executable Object Code
Verification

PIL

Run-time
error

report

Polyspace
Products
for C/C++

Executable Object Code (EOC)
Development

Target Integration Testing

Source code
(Figure 1)

Compiler

Object code

Target
(RTOS, devices,

etc.)

Integration
test

results
 report

Hardware/
software

integration
cases

Software
integration

cases

Embedded
Coder -

PIL

Low-level
test cases
(Figure 3)

Figure 2: Executable Object Code Development and Verification

1-19

1 Tool Description

Test Case Development
The DO-178C standard calls out three types of testing, all of which are based
on the software requirements:

• Hardware/Software Integration Tests

• Software Integration Tests

• Low-Level Tests

Additionally, for DO-178C, test cases should include:

• Normal range test cases

• Robustness test cases

For the executable object code developed from models, the high level test
cases and expected results can be the same as the simulation cases and
expected results (see Figure 3: Test Case Development on page 1-21). These
are developed from the high level requirements document and are completely
independent of Simulink, Embedded Coder and the compiler used for the
project. The test cases and expected result should also include robustness
cases. These test cases can be executed using processor in-the-loop (PIL)
capability in conjunction with the Simulink environment used as a test
harness, or on a completely separate software test harness.

The low-level test cases and expected results are based on the models, which
represent the low-level requirements. Simulink Design Verifier may be used
to develop these test cases (see Figure 3). Simulink Design Verifier uses
the model as its primary input and also has the capability to input model
coverage data. DO-178C calls out that if it can be shown that high level
tests cover low-level requirements, then those low-level requirements do not
need to be covered by specific low level tests. Model coverage can be used as
evidence that high level tests cover low-level requirements, in particular for
logical decisions within the models, but also for lookup table data and signal
range data within the models. Simulink Design Verifier can then be used to
generate tests for the remaining low-level requirements that are not covered
by high level testing, for example derived requirements within the model. The
user can also insert signal constraints and user defined test objectives within
the models or in model test harnesses to complete the testing. The use of test

1-20

Test Case Development

objectives on the inputs to a model to insert test data beyond normal ranges is
a good way to verify robustness, for example.

The Hardware/Software Integration cases and the Software Integration
cases (see Figure 3) are typically developed manually based on the high-level
software requirements. These test cases are executed on the final target in
an environment independent of the modeling environment. The final target
would include an RTOS or scheduler and the device drivers that interface to
the target hardware.

Requirements Simulation
cases

Model
coverage

report

High-level
test cases
(Figure 2)

Simulink
Verification and

Validation -
Model coverage

Model
(file

representation
including

accompanying
files)

Low-level
test cases
(Figure 2)

Model
(in-memory

representation
compiled

for simulation)

Simulink -
Modeling

engine

Simulink -
Execution

engine

Simulink
Design Verifier -

Test
generation

(Direct
memory access)

Test Case Development

(Direct
memory access)

Figure 3: Test Case Development

1-21

1 Tool Description

1-22

2

DO-178C Software Life
Cycle

• “DO-178C Software Life Cycle Overview” on page 2-2

• “Model-Based Design Workflow in DO-178C” on page 2-3

• “Software Planning Process” on page 2-5

• “Software Development Process” on page 2-10

• “Verification of Requirements Process” on page 2-17

• “Verification of Design Process” on page 2-24

• “Verification of Coding and Integration Process” on page 2-35

• “Testing of Outputs of Integration Process” on page 2-40

• “Verification of Verification Process Results” on page 2-48

• “Software Configuration Management Process” on page 2-57

• “Software Quality Assurance Process” on page 2-60

• “Certification Liaison Process” on page 2-63

2 DO-178C Software Life Cycle

DO-178C Software Life Cycle Overview
The DO-178C software life cycle consists of the following processes:

• Planning

• Software development

• Verification of requirements

• Verification of design

• Verification of coding and integration

• Testing of outputs of integration

• Verification of verification results

• Software configuration management

• Software quality assurance

• Certification liaison process

There are objectives that must be met for each of the life cycle stages in
DO-178C. In Annex A of DO-178C, these objectives are summarized in tables.
This document summarizes those tables and provides recommendations
on meeting the objectives using a Model-Based Design process. Available
Model-Based Design tools that can be used in achieving the objectives are
also included.

2-2

Model-Based Design Workflow in DO-178C

Model-Based Design Workflow in DO-178C
The following diagram shows a Model-Based Design workflow that addresses
the development and verification activities in a DO-178C software life cycle.

Requirements Model Source code Object code

CompilationCode
Generation

Modeling

Development artifact

Software development activity

Verification, validation, or tracing activity

Requirements
validation

Model
conformance

Code
conformance

Model traceability Source code traceability

Code
verification

High-level
verification

Low-level
verification

Model
verification

Object code traceability

The following table lists the MathWorks products and capabilities that can be
used in each activity of the workflow as Model-Based Design tools.

Workflow Activity Available Products and Capabilities for Model-Based Design

Requirements
validation

Manual review

Modeling Simulink, Stateflow

2-3

2 DO-178C Software Life Cycle

Workflow Activity Available Products and Capabilities for Model-Based Design

Model traceability Simulink Verification and Validation — Requirements Management
Interface (RMI), Simulink Report Generator — System Design
Description report*

Model conformance Simulink Verification and Validation — DO-178C/DO-331 checks*

Model verification SystemTest — Limit Check element*, Simulink Design Verifier —
Property Proving (optional), Simulink Design Verifier — Design Error
Detection (optional), Simulink Verification and Validation — Model
Coverage*, Simulink Report Generator — System Design Description
report*

Code generation Embedded Coder

Source code
traceability

Simulink Code Inspector — Traceability Report*

Code conformance Polyspace Products for C/C++ — MISRA AC AGC checks*

Code verification Simulink Code Inspector — Code Verification Report*, Polyspace
Products for C/C++*

Compilation Third-party IDE or compiler

Low-level verification SystemTest — Limit Check element*, Simulink Design Verifier — Test
Generation, Embedded Coder — PIL test, Embedded Coder — Code
coverage tool link (requires third-party code coverage tool), Polyspace
Products for C/C++*

High-level verification SystemTest — Limit Check element*, Embedded Coder — PIL test,
Embedded Coder — Code coverage tool link (requires third-party code
coverage tool), Polyspace Products for C/C++*

Object code
traceability (Level
A only)

Embedded Coder — Code generation report, Third-party IDE or
compiler — Object code listing

*The DO Qualification Kit product may be used to support DO-178C tool qualification.

2-4

Software Planning Process

Software Planning Process
The following table contains a summary of the planning process objectives
from DO-178C, including the objective, applicable DO-178C reference sections,
and software levels applicable to the objective. The table also describes the
potential impact to the process when using Model-Based Design.

Table A-1: Software Planning Process

Objective Ref
Sections

Activity
Ref
Sectons

Software
Levels

Model-Based Design
Process Impact

1 The activities
of the software
lifecycle processes
are defined.

4.1.a 4.2.a
4.2.c
4.2.d
4.2.e
4.2.g
4.2.i
4.2.l
4.3.c

A, B, C, D Must include Model-Based
Design as part of the
development process.

2 The software
life cycle(s),
including the
inter-relationships
between the
processes, their
sequencing,
feedback
mechanisms, and
transition criteria,
is defined.

4.1.b 4.2.i
4.3.b

A, B, C Must include Model-Based
Design transition and
sequencing relationships.

3 Software life
cycle environment
is selected and
defined.

4.1.c 4.4.1
4.4.2.a
4.4.2.b
4.4.2.c
4.4.3

A, B, C Must include Model-Based
Design tools in the life cycle
processes.

2-5

2 DO-178C Software Life Cycle

Table A-1: Software Planning Process (Continued)

Objective Ref
Sections

Activity
Ref
Sectons

Software
Levels

Model-Based Design
Process Impact

4 Additional
considerations are
addressed.

4.1.d 4.2.f
4.2.h
4.2.i
4.2.j
4.2.k

A, B, C, D If applicable to the project
and tool qualification,
must address any EASA
Certification Review Items
and FAA Issue Papers. DO
Qualification Kit product
available for tool qualification.

5 Software
development
standards are
defined.

4.1.e 4.2.b
4.2.g
4.5

A, B, C As part of the development
standards, must include
modeling standards.

6 Software plans
comply with
DO-178C.

4.1.f 4.3.a
4.6

A, B, C No impact

7 Development
and revision of
software plans are
coordinated.

4.1.g 4.2.g
4.6

A, B, C No impact

The following sections describe in more detail the potential impacts for each
planning process objective when using Model-Based Design, if applicable, as
compared to traditional development.

Activities of the Software Lifecycle Processes are
Defined
Model-Based Design must be defined as one of the activities in the software
development process. This means the DO-331, Model-Based Development
and Verification Supplement to DO-178C and DO-278A, becomes applicable.
Models might be defined as Specification Models or Design Models, as
described in DO-331 Section MB.1.6.2. The model definition should be
addressed in the planning process. DO-331 Section MB.1.6.3 gives some

2-6

Software Planning Process

examples of how Specification and Design Models might be used. As shown
in the examples, the responsibility for developing the model requirements,
and the models themselves, might be in the systems or software domains. In
either case, both the model requirements, and the models themselves, fall
under the guidance of DO-331. The responsibilities should be identified in the
planning process. The planning process must also identify how to use model
simulation and model analysis as part of the verification processes.

If formal methods tools, for example Polyspace, are to be used for certification
credit, then DO-333, Formal Methods Supplement to DO-178C and DO-278A
becomes applicable. The planning process must identify how to use formal
analysis as part of the verification processes.

With one possible exception, Model-Based Design does not use object-oriented
technology. The possible exception allows Embedded Coder to optionally
generate C++ encapsulated code. In this case, the code interface uses classes
and methods. Therefore, DO-332, Object-Oriented Technology and Related
Techniques Supplement to DO-178C and DO-278A, becomes applicable. In
this case, the planning process must identify how to develop and verify this
object-oriented technology.

Address change control and configuration management of the models during
the planning process.

Software Life Cycle is Defined
The software life cycle(s), including the inter-relationships between the
processes, their sequencing, feedback mechanisms, and transition criteria,
must be defined. When Model-Based Design begins, it must also be defined.
This stage is when the higher-level requirements (either system requirements
or high-level software requirements) are developed, configured, and approved.

When code is generated, the code must be defined. This stage is when the
models have been developed, configured, and approved. The steps to approve
the models as complete and correct must be defined and may include model:

• Reviews

• Simulation testing

• Static analysis

2-7

2 DO-178C Software Life Cycle

• Dynamic analysis

Software Life-Cycle Environment Is Selected and
Defined
Model-Based Design tools used in the development and verification
processes must be defined. The tools may include the MATLAB, Simulink,
Stateflow, MATLAB Coder, Simulink Coder, Embedded Coder, Simulink
Code Inspector,Polyspace products for C/C++, Simulink Verification and
Validation, Simulink Design Verifier, SystemTest, and Simulink Report
Generator products.

Additional Considerations are Addressed
If any Model-Based Design tools are qualified as Criteria 1, Criteria 2, or
Criteria 3 tools, as described in DO-178C Section 12.2.2, each of the tools to
be qualified must be identified and the tool qualification activities must be
defined as described in DO-330, Software Tool Qualification Considerations.
The DO Qualification Kit product may be used in the qualification of
MathWorks verification tools.

Software Development Standards are Defined
Whether Specifications or Design Modes are used (see “Activities of the
Software Lifecycle Processes are Defined” on page 2-6), modeling standards
must be in place to satisfy the requirements standards objectives. The
Simulink documentation contains Modeling Guidelines that can be used as a
starting point for developing project specific modeling standards. Compliance
to the standards must be verified through the use of tools and/or human
reviews. There are Model Advisor checks to verify compliance with the
Modeling Guidelines provided in the Simulink documentation.

For the Embedded Coder tool, MISRA® AC AGC2 coding standards can be
used. Some constructs in the generated code, such as naming conventions,
can be controlled by users to meet specific customer coding standards.
Compliance to the standards must be verified through tools and/or human
reviews. Polyspace provides capability to check the MISRA AC AGC rules.

2. The Motor Industry Software Reliability Association. MISRA AC AGC: Guidelines for
the application of MISRA-C:2004 in the context of automatic code generation, ISBN
978-906400-02-6 (PDF), November 2007. MIRA Limited, 2004.

2-8

Software Planning Process

Software Plans Comply with DO-178C
A Plan for Software Aspects of Certification (PSAC) must be developed, the
same as for traditional development programs.

Development and Revision of Software Plans are
Coordinated
The Plan for Software Aspects of Certification (PSAC) must be configured
under change control and approved by the applicable certification authorities
as part of the program, as in a traditional development process.

2-9

2 DO-178C Software Life Cycle

Software Development Process
The following table contains a summary of the software development process
objectives from DO-178C and DO-331, including the objective, applicable
DO-178C and DO-331 reference sections, and software levels applicable to
the objective. The table also describes the available Model-Based Design tools
for satisfying the objectives.

Table A-2: Software Development Process

Objective Ref
Sections

Activity
Ref Sections

Software
Levels

Available Products for
Model-Based Design

1 High-level
requirements are
developed.

MB.5.1.1.a MB.5.1.2.a
MB.5.1.2.b
MB.5.1.2.c
MB.5.1.2.d
MB.5.1.2.e
MB.5.1.2.f
MB.5.1.2.g
MB.5.1.2.j
MB.5.1.2.k
MB.5.1.2.l
5.5a

A, B, C, D Simulink, Stateflow

2 Derived high-level
requirements
are defined and
provided to the
system processes,
including the
system safety
assessment
process.

MB.5.1.1.b MB.5.1.2.h
MB.5.1.2.i
MB.5.1.2.k

A, B, C, D Simulink, Stateflow

3 Software
architecture is
developed.

MB.5.2.1.a MB.5.2.2.a
MB.5.2.2.d
MB.5.2.2.h

A, B, C, D Simulink, Stateflow

2-10

Software Development Process

Table A-2: Software Development Process (Continued)

Objective Ref
Sections

Activity
Ref Sections

Software
Levels

Available Products for
Model-Based Design

4 Low-level
requirements are
developed.

MB.5.2.1.a MB.5.2.2.a
MB.5.2.2.e
MB.5.2.2.f
MB.5.2.2.g
MB.5.2.2.h
MB.5.2.3.a
MB.5.2.3.b
5.2.4.a
5.2.4.b
5.2.4.c
MB.5.5
5.5b

A, B, C Simulink, Stateflow

5 Derived low-level
requirements
are defined and
provided to the
system proceses,
including the
system safety
assessment
process.

MB.5.2.1.b MB.5.2.2.b
MB.5.2.2.c
MB.5.2.2.h

A, B, C Simulink, Stateflow

6 Source code is
developed.

5.3.1.a 5.3.2.a
5.3.2.b
5.3.2.c
5.3.2.d
MB.5.5
5.5.c

A, B, C Simulink Coder,
Embedded Coder

2-11

2 DO-178C Software Life Cycle

Table A-2: Software Development Process (Continued)

Objective Ref
Sections

Activity
Ref Sections

Software
Levels

Available Products for
Model-Based Design

7 Executable
Object Code and
Parameter Data
Item Files, if any,
are produced and
loaded in the
target computer.

5.4.1.a 5.4.2.a
5.4.2.b
5.4.2.c
5.4.2.d
5.4.3.e
5.4.3.f

A, B, C, D Embedded Coder — IDE
Link

8 Specification
Model elements
that do not
contribute to
implementation
or realization of
any high-level
requirements are
identified.

MB.5.1.1.c MB.5.1.2.k A, B, C, D Simulink, Stateflow

9 Design Model
elements that do
not contribute to
implementation
or realization
of any software
architecture are
identified.

MB.5.2.1.c MB.5.2.2.h A, B, C, D Simulink, Stateflow

10 Design Model
elements that do
not contribute to
implementation
or realization
of any low-level
requirements are
identified.

MB.5.2.1.c MB.5.2.2.h A, B, C Simulink, Stateflow

2-12

Software Development Process

The following sections describe in more detail the potential impacts for each
software development process objective when using Model-Based Design, if
applicable, as compared to traditional development.

High-Level Requirements are Developed
If models are defined as Specification Models, as described in DO-331
Sepction MB.1.6.2, then the Simulink and Stateflow products may be used to
develop the high-level software requirements. The components within these
models, such as Simulink blocks or Stateflow objects, would then trace to the
applicable system-level requirements, which are developed in accordance with
ARP4754A3. The models should be developed in accordance with the modeling
standards defined during the planning process.

Derived High-Level Requirements are Defined and
Provided to System Processes
If models are defined as Specification Models, as described in DO-331 Section
MB.1.6.2, , any Simulink or Stateflow components that do not trace to the
system requirements would be identified as derived requirements. These
derived requirements would be provided to the safety assessment process.

Software Architecture Is Developed
When models are derived as Design Models, as described in DO-331 Section
MB.1.6.2, architecture of individual software modules may be defined by the
Simulink and Stateflow models, including sequencing and interfacing of the
various elements within the models. If model reference capability is used,
then the model dependency viewer may be used to document the architecture
of the software modules that are integrated using this capability.

The higher-level architecture of how the Model-Based Design generated
code interfaces to other code within the system must be defined separately.
This may include an interface to the real-time operating system (RTOS),
calling sequence for the code generated from the Model-Based Design, and
data interface to other code modules.

3. SAE International. Guidelines for Development of Civil Aircraft and Systems, 2010.

2-13

2 DO-178C Software Life Cycle

Low-Level Requirements are Developed
If models are defined as Design Models, as described in DO-331 Section
MB.1.6.2, then the Simulink and Stateflow products may be used to develop
the low-level software requirements. The components within these models
would then trace to the applicable high-level software requirements. The
models should be developed in accordance with the modeling standards
defined during the planning process.

Derived Low-Level Requirements are Defined and
Provided to the System Processes
If models are defined as Design Models, as described in DO-331 Section
MB.1.6.2, then any Simulink or Stateflow components that do not trace
to the high-level software requirements would be identified as derived
requirements. These derived requirements would be provided to the safety
assessment process.

Source Code Is Developed
Embedded Coder and Simulink Coder products may be used to generate
the source code from the model. The source code can trace to the model
components by using commenting options. The source code can be generated
in accordance with MISRA AC AGC standards, with some exceptions, by
adhering to modeling standards.

Executable Object Code and Parameter Data
Item Files are Produced and Loaded in the Target
Computer
The generated source code may be compiled, linked, and the executable object
code automatically downloaded to a target processor or DSP using the IDE
Link capability of the Embedded Coder product. If parameter data items are
used, the parameter data item files should be generated and downloaded
to the target processor DSP.

Alternatively, the generated source code may be compiled and linked using
standard compilers and linkers. The make file that the compiler uses may
be generated by the Embedded Coder product or developed manually. The
executable object code is then loaded onto the target computer.

2-14

Software Development Process

Specification Model Elements That Do Not Contribute
to Implementation or Realization of Any High-Level
Requirements are Identified
Simulink contains both virtual blocks and non-virtual blocks, as described
in the documentation. In general, implementation is defined by non-virtual
blocks, not virtual blocks. Examples of virtual blocks include DOC blocks,
subsystems used to group blocks together in a model, and some connections
inside virtual subsystems, such as inports or outports. The modeling
standards for the project should define these types of virtual blocks as not
contributing to the implementation.

Design Model Elements That Do Not Contribute to
Implementation or Realization of Any Software
Architecture are Identified
Simulink contains both virtual blocks and non-virtual blocks, as described
in the documentation. In general, implementation is defined by non-virtual
blocks, not virtual blocks. Examples of virtual blocks include DOC blocks,
subsystems used to group blocks together in a model, and some connections
inside virtual subsystems, such as inports or outports. The modeling
standards for the project should define these types of non-virtual blocks
as not contributing to the implementation. It should be noted that some
virtual blocks, such as Mux/Demux or Goto/From, do define data flows for the
software architecture. Note that some virtual blocks, such as Mux/Demux or
Goto/From blocks, do define data flows for the software architecture.

Design Model Elements That Do Not Contribute to
Implementation or Realization of Any Low-Level
Requirements are Identified
Simulink contains both virtual blocks and non-virtual blocks, as described
in the documentation. In general, implementation is defined by non-virtual
blocks, not virtual blocks. Examples of virtual blocks include DOC blocks,
subsystems used to group blocks together in a model, and some connections
inside virtual subsystems, such as inports or outports. The modeling
standards for the project should define these types of non-virtual blocks
as not contributing to the implementation. It should be noted that some

2-15

2 DO-178C Software Life Cycle

virtual blocks, such as Mux/Demux or Goto/From, do define data flows for the
software architecture.

2-16

Verification of Requirements Process

Verification of Requirements Process
The following table contains a summary of the verification of requirements
process objectives from DO-178C and DO-331, including the objective,
applicable DO-178C and DO-331 reference sections, and software levels
applicable to the objective. The table also provides the available Model-Based
Design tools that may be used in satisfying the objectives.

Table A-3: Verification of Requirements Process

Objective Ref Sections Activity
Ref Sectons

Software
Levels

Available Products for
Model-Based Design

1 High-level
requirements
comply with
system
requirements.

MB.6.3.1.a MB.6.3.1
MB.6.8.1

A, B, C, D Simulink Verification and
Validation, Simulink Design
Verifier, SystemTest,
Simulink Report Generator,
DO Qualification Kit

2 High-level
requirements
are accurate
and
consistent.

MB.6.3.1.b MB.6.3.1
MB.6.8.1

A, B, C, D Simulink Verification and
Validation, SystemTest,
Simulink Report Generator,
DO Qualification Kit

3 High-level
requirements
are
compatible
with target
computer.

MB.6.3.1.c MB.6.3.1 A, B Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification
Kit

4 High-level
requirements
are
verifiable.

MB.6.3.1.d MB.6.3.1
MB.6.8.1

A, B, C Simulink Verification and
Validation, Simulink Design
Verifier, SystemTest,
Simulink Report Generator,
DO Qualification Kit

2-17

2 DO-178C Software Life Cycle

Table A-3: Verification of Requirements Process (Continued)

Objective Ref Sections Activity
Ref Sectons

Software
Levels

Available Products for
Model-Based Design

5 High-level
requirements
conform to
standards.

MB.6.3.1.e MB.6.3.1 A, B, C Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification
Kit

6 High-level
requirements
are traceable
to system
requirements.

MB.6.3.1.f MB.6.3.1 A, B, C, D Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification
Kit

7 Algorithms
are accurate.

MB.6.3.1.g MB.6.3.1
MB.6.8.1

A, B, C Simulink Verification and
Validation, Simulink Design
Verifier, SystemTest,
Simulink Report Generator,
DO Qualification Kit

8 Simulation
cases are
correct

MB.6.8.3.2.a MB.6.8.1
MB.6.8.3.2

A, B, C, D SystemTest, Simulink
Report Generator

9 Simulation
procedures
are correct

MB.6.8.3.2.b MB.6.8.1
MB.6.8.3.2

A, B, C, D SystemTest, Simulink
Report Generator

10 Simulation
results are
correct and
discrepancies
explained

MB.6.8.3.2.c MB.6.8.1
MB.6.8.3.2

A, B, C, D SystemTest, Simulink
Report Generator

The following sections describe in more detail the potential impacts for each
of the verification of requirements process objectives when using Model-Based
Design, if applicable, as compared to traditional development.

2-18

Verification of Requirements Process

High-Level Requirements Comply with System
Requirements
If models are defined as Specification Models, as described in DO-331 Section
MB.1.6.2, compliance with system requirements may be accomplished
using a combination of model reviews, model analysis, and simulation. The
Simulink Report Generator product may be used to generate a System Design
Description report that includes a trace report to the system requirements.
The SystemTest and Simulink Verification and Validation products may
be used to develop test cases based on the system requirements, and
execute those test cases on the model to assist in verifying that the system
requirements are satisfied. The Simulink Design Verifier product may be
used to prove properties of the model to assist in verifying certain system
requirements are satisfied.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• System Design Description report in the Simulink Report Generator
product.

High-Level Requirements Are Accurate and Consistent
If models are defined as Specification Models, as described in DO-331 Section
MB.1.6.2, accuracy and consistency may be verified using a combination of
model reviews and simulation. The Simulink Report Generator product
may be used to generate a System Design Description report that includes a
trace report to the higher-level requirements. The SystemTest and Simulink
Verification and Validation products may be used to develop and execute test
cases based on the system requirements to assist in verifying the accuracy
and consistency. The Model Advisor may be used to assist in verifying the
diagnostic settings used during Simulink simulations, and also to check the
usage of certain Simulink blocks.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

2-19

2 DO-178C Software Life Cycle

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• DO-178C/DO-331 checks in the Simulink Verification and Validation
product.

• System Design Description report in the Simulink Report Generator
product.

High-Level Requirements Are Compatible withTarget
Computer
If models are defined as Specification Models, as described in DO-331 Section
MB.1.6.2, compatibility with target hardware may be accomplished using a
combination of model reviews and Model Advisor checks. The Simulink Report
Generator product may be used to generate a System Design Description
report that includes a trace report to the higher-level requirements. The
Model Advisor may be used to assist in verifying that the hardware interface
settings used by the Embedded Coder product are compatible with the target
processor.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178C/DO-331 checks in the Simulink Verification and Validation
product.

• System Design Description report in the Simulink Report Generator
product.

High-Level Requirements Are Verifiable
If models are defined as Specification Models, as described in DO-331 Section
MB.1.6.2, verification may be accomplished using a combination of model
reviews and simulation. The Simulink Report Generator product may be used
to generate a System Design Description report that includes a trace report
to the higher-level requirements. The SystemTest and Simulink Verification
and Validation products may be used to develop test cases from the system
requirements and execute those test cases on the model. During execution
of these test cases, a Simulink Verification and Validation model coverage
report may be generated to assist in verifying that all requirements are fully
verified. The coverage report may assist in finding conditions and decisions

2-20

Verification of Requirements Process

in the model that cannot be reached, indicating that the requirements may
not be fully verifiable. The Simulink Design Verifier product may be used to
identify untestable or unreachable model conditions and decisions using test
case generation, indicating that the high-level requirements may not be fully
verifiable. The Model Advisor may be used to assist in checking the usage of
certain Simulink blocks and data types.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• DO-178C/DO-331 checks in the Simulink Verification and Validation
product.

• Model coverage in the Simulink Verification and Validation product.

• System Design Description report in the Simulink Report Generator
product.

High-Level Requirements Conform to Standards
If models are defined as Specification Models, as described in DO-331 Section
MB.1.6.2, conformance to standards may be accomplished using a combination
of model reviews and Model Advisor checks. The Simulink Report Generator
product may be used to generate a System Design Description report that
includes a trace report to the higher-level requirements. The Model Advisor
may verify predefined model standards, and may be customized using an API
to perform checks defined by the user that may be unique to their application.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178C/DO-331 checks in the Simulink Verification and Validation
product.

• Custom checks added by the user, but the user is responsible for defining
the Tool Operational Requirements, Test Cases, Procedures, and Expected
Results for those custom checks.

• System Design Description report in the Simulink Report Generator
product.

2-21

2 DO-178C Software Life Cycle

High-Level Requirements Are Traceable to System
Requirements
If models are defined as Specification Models, as described in DO-331 Section
MB.1.6.2, traceability to system requirements may be accomplished by model
reviews that include a report generated by the Requirements Management
Interface (RMI), a capability of the Simulink Verification and Validation
product. The Simulink Report Generator product may be used to generate a
System Design Description report that includes a trace report to the system
requirements. The Model Advisor may be used to assist in verifying that
requirements links are consistent, and can identify model components that
do not trace to requirements.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178C/DO-331 checks in the Simulink Verification and Validation
product.

• System Design Description report in the Simulink Report Generator
product.

Algorithms Are Accurate
If models are defined as Specification Models, as described in DO-331 Section
MB.1.6.2, accuracy of the algorithms may be verified using a combination
of model reviews and simulation. The Simulink Report Generator product
may be used to generate a System Design Description report that includes a
trace report to the higher-level requirements. The SystemTest and Simulink
Verification and Validation products may be used to develop test cases from
the system requirements and execute those test cases on the model, assisting
in verifying the accuracy of the algorithms within the model. The Model
Advisor may be used to assist in checking the usage of certain Simulink
blocks and data types. The Simulink Design Verifier design error detection
capability may be used to assist in finding potential divide by zero or numeric
overflow computations that could lead to incorrect behavior.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

2-22

Verification of Requirements Process

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• DO-178C/DO-331 checks in the Simulink Verification and Validation
product.

• System Design Description report in the Simulink Report Generator
product.

Simulation Cases Are Correct
Simulation cases may be developed using SystemTest or Simulink Report
Generator. These test cases need to be reviewed against the system
requirements.

Simulation Procedures Are Correct
Simulation procedures may be developed using SystemTest or Simulink
Report Generator. These test procedures need to be reviewed against the
system requirements and test cases.

Simulation Results Are Correct and Discrepancies
Explained
Simulations may be executed using SystemTest or Simulink Report
Generator. In the case of SystemTest, the Limit Check element can be used to
compare the expected results to actual results. The simulation results need to
be reviewed and failures need to be corrected or explained.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

2-23

2 DO-178C Software Life Cycle

Verification of Design Process
The following table contains a summary of the verification of design process
objectives from DO-178C and DO-331, including the objective, applicable
DO-178C and DO-331 reference sections, and software levels applicable to
the objective. The table also describes the available Model-Based Design tools
for satisfying the objectives.

Table A-4: Verification of Design Process

Objective Ref
Sections

Activiity
Ref
Sections

Software
Levels

Available Products for
Model-Based Design

1 Low-level
requirements
comply with
high-level
requirements.

MB.6.3.2.a MB.6.3.2
MB.6.8.1

A, B, C Simulink Verification
and Validation, Simulink
Design Verifier, SystemTest,
Simulink Report Generator,
DO Qualification Kit

2 Low-level
requirements
are accurate and
consistent.

MB.6.3.2.b MB.6.3.2
MB.6.8.1

A, B, C Simulink Verification and
Validation, SystemTest,
Simulink Report Generator,
DO Qualification Kit

3 Low-level
requirements
are compatible
with the target
computer.

MB.6.3.2.c MB.6.3.2 A, B Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification
Kit

4 Low-level
requirements are
verifiable.

MB.6.3.2.d MB.6.3.2
MB.6.8.1

A, B Simulink Verification
and Validation, Simulink
Design Verifier, SystemTest,
Simulink Report Generator,
DO Qualification Kit

5 Low-level
requirements
conform to
standards.

MB.6.3.2.e MB.6.3.2 A, B, C Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification
Kit

2-24

Verification of Design Process

Table A-4: Verification of Design Process (Continued)

Objective Ref
Sections

Activiity
Ref
Sections

Software
Levels

Available Products for
Model-Based Design

6 Low-level
requirements
are traceable
to high-level
requirements.

MB.6.3.2.f MB.6.3.2 A, B, C Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification
Kit

7 Algorithms are
accurate.

MB.6.3.2.g MB.6.3.2
MB.6.8.1

A, B, C Simulink Verification
and Validation, Simulink
Design Verifier, SystemTest,
Simulink Report Generator,
DO Qualification Kit

8 Software
architecture
is compatible
with high-level
requirements.

MB.6.3.3.a MB.6.3.3
MB.6.8.1

A, B, C Simulink Report Generator

9 Software
architecture is
consistent.

MB.6.3.3.b MB.6.3.3
MB.6.8.1

A, B, C Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification
Kit

10 Software
architecture is
compatible with
target computer.

MB.6.3.3.c MB.6.3.3 A, B Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification
Kit

11 Software
architecture is
verifiable.

MB.6.3.3.d MB.6.3.3
MB.6.8.1

A, B Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification
Kit

12 Software
architecture
conforms to
standards.

MB.6.3.3.e MB.6.3.3 A, B, C Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification
Kit

2-25

2 DO-178C Software Life Cycle

Table A-4: Verification of Design Process (Continued)

Objective Ref
Sections

Activiity
Ref
Sections

Software
Levels

Available Products for
Model-Based Design

13 Software
partitioning
integrity is
confirmed.

MB.6.3.3.f MB.6.3.3 A, B, C, D Not applicable

14 Simulation cases
are correct

MB.6.8.3.2.a MB.6.8.1
MB.6.8.3.2

A, B, C SystemTest, Simulink Report
Generator

15 Simulation
procedures are
correct

MB.6.8.3.2.b MB.6.8.1
MB.6.8.3.2

A, B, C SystemTest, Simulink Report
Generator

16 Simulation cases
are correct and
discrepancies
explained

MB.6.8.3.2.c MB.6.8.1
MB.6.8.3.2

A, B, C SystemTest, Simulink Report
Generator, DO Qualification
Kit

The following sections describe in more detail the potential impacts for each of
the verification of design process objectives when using Model-Based Design,
if applicable, as compared to traditional development.

Low-Level Requirements Comply with High-Level
Requirements
If models are defined as Design Models, as described in DO-331 Section
MB.1.6.2, compliance with high-level software requirements may be
accomplished using a combination of model reviews, model analysis, and
simulation. The Simulink Report Generator product may be used to generate
a System Design Description report that includes a trace report to the
system requirements. The SystemTest and Simulink Verification and
Validation products may be used to develop test cases from the high-level
requirements and execute those test cases on the model to assist in verifying
that the high-level requirements are satisfied. The model coverage report
from Simulink Verification and Validation product may be used to assist in
identifying unintended functionality in a Design Model and also to assess

2-26

Verification of Design Process

the completeness of the simulation cases. The Simulink Design Verifier
product may be used to prove properties of the model in order to assist in
verifying certain high-level requirements are satisfied. If a Specification
Model is also used on a project with a Design Model derived from it, then
the Simulink Design Verifier product may be used to generate test cases
from the Specification Model. The test cases can then be used to verify the
Design Model.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• System Design Description report in the Simulink Report Generator
product.

• Model coverage in the Simulink Verification and Validation product.

Low-Level Requirements Are Accurate and Consistent
If models are defined as Design Models, as described in DO-331 Section
MB.1.6.2, accuracy and consistency may be verified using a combination of
model reviews and simulation. The Simulink Report Generator product
may be used to generate a System Design Description report that includes a
trace report to the higher-level requirements. The SystemTest and Simulink
Verification and Validation products may be used to develop test cases from
the high-level requirements, and execute those test cases on the model to
assist in verifying the accuracy and consistency. The Model Advisor may
be used to assist in verifying the diagnostic settings used during Simulink
simulations, and also to check the usage of certain Simulink blocks.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• DO-178C/DO-331 checks in the Simulink Verification and Validation
product.

2-27

2 DO-178C Software Life Cycle

• System Design Description report in the Simulink Report Generator
product.

Low-Level Requirements Are Compatible with Target
Computer
If models are defined as Design Models, as described in DO-331 Section
MB.1.6.2, compatibility with target hardware may be accomplished using a
combination of model reviews and Model Advisor checks. The Simulink Report
Generator product may be used to generate a System Design Description
report that includes a trace report to the higher-level requirements. The
Model Advisor may be used to assist in verifying that the hardware interface
settings used by the Embedded Coder product are compatible with the target
processor.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178C/DO-331 checks in the Simulink Verification and Validation
product.

• System Design Description report in the Simulink Report Generator
product.

Low-Level Requirements Are Verifiable
If models are defined as Design Models, as described in DO-331 Section
MB.1.6.2, verifiability may be accomplished using a combination of model
reviews and simulation. The Simulink Report Generator product may be used
to generate a System Design Description report that includes a trace report
to the higher-level requirements. The SystemTest and Simulink Verification
and Validation products may be used to develop test cases from the high-level
requirements, and execute those test cases on the model. During execution
of these test cases, a Simulink Verification and Validation model coverage
report may be generated to assist in verifying that all requirements are fully
verified. The coverage report may assist in finding conditions and decisions
in the model that cannot be reached, indicating that the design may not
be fully verifiable. The Simulink Design Verifier product may be used to
identify untestable or unreachable model conditions and decisions using test
case generation, indicating that the low-level requirements may not be fully

2-28

Verification of Design Process

verifiable. The Model Advisor may be used to assist in checking the usage of
certain Simulink blocks and data types.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• DO-178C/DO-331 checks in the Simulink Verification and Validation
product.

• Model coverage in the Simulink Verification and Validation product.

• System Design Description report in the Simulink Report Generator
product.

Low-Level Requirements Conform to Standards
If models are defined as Design Models, as described in DO-331 Section
MB.1.6.2, conformance to standards may be accomplished using a combination
of model reviews and Model Advisor checks. The Simulink Report Generator
product may be used to generate a System Design Description report that
includes a trace report to the higher-level requirements. The Model Advisor
may be used to verify predefined model standards and may also be customized
to perform checks defined by the user that are unique for their application.
The model coverage report from Simulink Verification and Validation product
may be used to determine Cyclomatic complexity of the model. Model
complexity criteria is typically a part of the modeling standards.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178C/DO-331 checks in the Simulink Verification and Validation
product.

• Custom checks added by the user, but the user is responsible for defining
the Tool Operational Requirements, Test Cases, Procedures, and Expected
Results for those custom checks.

• System Design Description report in the Simulink Report Generator
product.

2-29

2 DO-178C Software Life Cycle

• Model coverage in the Simulink Verification and Validation product.

Low-Level Requirements Are Traceable to High-Level
Requirements
If models are defined as Design Models, as described in DO-331 Section
MB.1.6.2, traceability to high-level software requirements may be
accomplished using a combination of model reviews and the Requirements
Management Interface (RMI). The Simulink Report Generator product may
be used to generate a System Design Description report that includes a trace
report to the high-level software requirements. The Model Advisor may be
used to assist in verifying that requirements links are consistent.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178C/DO-331 checks in the Simulink Verification and Validation
product.

• System Design Description report in the Simulink Report Generator
product.

Algorithms Are Accurate
If models are defined as Design Models, as described in DO-331 Section
MB.1.6.2, accuracy of the algorithms may be verified using a combination
of model reviews and simulation. The Simulink Report Generator product
may be used to generate a System Design Description report that includes a
trace report to the higher-level requirements. The SystemTest and Simulink
Verification and Validation products may be used to develop test cases from
the high-level requirements, and execute those test cases on the model,
assisting in verifying the accuracy of the algorithms within the model. The
Model Advisor may be used to assist in checking the usage of certain Simulink
blocks and data types. The Simulink Design Verifier design error detection
capability may be used to assist in finding potential divide by zero or numeric
overflow computations that could lead to incorrect behavior.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

2-30

Verification of Design Process

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• System Design Description report in the Simulink Report Generator
product.

Software Architecture Is Compatible with High-Level
Requirements
Compatibility of the software architecture within the models may be verified
using model reviews. The Simulink Report Generator product may be used
to generate a System Design Description report. The Model Dependency
Viewer in the Simulink product can show the architecture of reference models
and library blocks.

The System Design Description report capability in the Simulink Report
Generator product may be qualified as a verification tool using the DO
Qualification Kit product.

The higher-level software architecture, which includes the real-time operating
system (RTOS) and other code, may be verified using traditional methods.

Software Architecture Is Consistent
Consistency of the software architecture within the models may be verified
using model reviews. The Simulink Report Generator product may be used
to generate a System Design Description report. The Model Dependency
Viewer in the Simulink product can show the architecture of reference models
and library blocks. The Model Advisor may be used to assist in verifying
the diagnostic settings used during Simulink simulations, and also to check
the usage of certain Simulink blocks.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178C/DO-331 checks in the Simulink Verification and Validation
product.

• System Design Description report in the Simulink Report Generator
product.

2-31

2 DO-178C Software Life Cycle

The higher-level software architecture, which includes the RTOS and other
code, may be verified using traditional methods.

Software Architecture Is Compatible with Target
Computer
Target compatibility of the software architecture within the models may be
verified using model reviews. The Simulink Report Generator product may be
used to generate a System Design Description report. The Model Advisor may
be used to verify that the hardware interface settings used by the Embedded
Coder product are compatible with the target processor.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178C/DO-331 checks in the Simulink Verification and Validation
product.

• System Design Description report in the Simulink Report Generator
product.

The higher-level software architecture, which includes the RTOS and other
code, may be verified using traditional methods.

Software Architecture Is Verifiable
Verification of the software architecture may be accomplished using a
combination of model reviews and simulation. The Simulink Report Generator
product may be used to generate a System Design Description report. The
SystemTest and Simulink Verification and Validation products may be used
to develop test cases from the high-level requirements, and execute those test
cases on the model. During execution of these test cases, a model coverage
report may be generated to assist in verifying that all requirements are fully
verified. The coverage report may assist in finding conditions and decisions in
the model architecture that cannot be reached, indicating that the software
architecture may not be fully verifiable.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

2-32

Verification of Design Process

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• Model coverage in the Simulink Verification and Validation product.

• System Design Description report in the Simulink Report Generator
product.

The higher-level software architecture, which includes the RTOS and other
code, may be verified using traditional methods.

Software Architecture Conforms to Standards
Conformance to standards may be accomplished using a combination of model
reviews and Model Advisor checks. The Simulink Report Generator product
may be used to generate a System Design Description report. The Model
Advisor may be used to verify predefined model standards, and may also be
customized to perform checks defined by the user that are unique for their
application.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178C/DO-331 checks in the Simulink Verification and Validation
product.

• Custom checks added by the user, but the user is responsible for defining
the Tool Operational Requirements, Test Cases, Procedures, and Expected
Results for those custom checks.

• System Design Description report in the Simulink Report Generator
product.

The higher-level software architecture, which includes the RTOS and other
code, may be verified using traditional methods.

Software Partitioning Integrity Is Confirmed
Because partitioning is outside of the scope of Model-Based Design,
partitioning may be verified using traditional methods.

2-33

2 DO-178C Software Life Cycle

Simulation Case Are Correct
Simulation cases may be developed using SystemTest or Simulink Report
Generator. These test cases need to be reviewed against the high-level
requirements.

Simulation Procedures Are Correct
Simulation procedures may be developed using SystemTest or Simulink
Report Generator. These test procedures need to be reviewed against the
high-level requirements and test cases.

Simulation Results Are Correct and Discrepancies
Explained
Simulations may be executed using SystemTest or Simulink Report
Generator. Within these tools the actual results can be compared to expected
results within the test report. In the case of SystemTest, the Limit Check
element can be used to compare the expected results to actual results. The
simulation results need to be reviewed and failures need to be corrected or
explained.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

2-34

Verification of Coding and Integration Process

Verification of Coding and Integration Process
The following table contains a summary of the verification of coding and
integration process objectives from DO-178C, DO-331, DO-332 and DO-333,
including the objective, applicable DO-178C, DO-331, DO-332 and DO-333
reference sections, and software levels applicable to the objective. The table
also describes the available Model-Based Design tools for satisfying the
objectives.

Table A-5: Verification of Coding and Integration Process

Objective Ref
Sections

Activity
Ref
Sections

Software
Levels

Available Products for
Model-Based Design

1 Source code
complies with
low-level
requirements.

MB.6.3.4.a MB.6.3.4 A, B, C Simulink Code Inspector, DO
Qualification Kit

2 Source code
complies
with software
architecture.

MB.6.3.4.b
OO.6.3.4.b
FM.6.3.4.b
FM.6.3.a

MB.6.3.4
OO.6.3.4
FM.6.3.4

A, B, C Simulink Code Inspector,
Polyspace, DO Qualification
Kit

3 Source code is
verifiable.

MB.6.3.4.c
OO.6.3.4.c
FM.6.3.4.c
FM.6.3.e

MB.6.3.4
OO.6.3.4
FM.6.3.4

A, B Simulink Code Inspector,
Polyspace, DO Qualification
Kit

4 Source code
conforms to
standards.

MB.6.3.4.d
OO.6.3.4.d
FM.6.3.4.d
FM.6.3.f

MB.6.3.4
OO.6.3.4
FM.6.3.4

A, B, C Polyspace, DO Qualification
Kit

5 Source code
is traceable
to low-level
requirements.

MB.6.3.4.e MB.6.3.4 A, B, C Simulink Code Inspector, DO
Qualification Kit

2-35

2 DO-178C Software Life Cycle

Table A-5: Verification of Coding and Integration Process (Continued)

Objective Ref
Sections

Activity
Ref
Sections

Software
Levels

Available Products for
Model-Based Design

6 Source code is
accurate and
consistent.

6.3.4.f
OO.6.3.4.f
FM.6.3.4.f
FM.6.3.b
FM.6.3.c

MB.6.3.4
OO.6.3.4
FM.6.3.4

A, B, C Simulink Code Inspector,
Polyspace, DO Qualification
Kit

7 Output of software
integration process
is complete and
correct.

6.3.5.a 6.3.5 A, B, C Not applicable

8 Parameter Data
Item File is correct
and complete

6.6.a 6.6 A,B,C,D Not applicable

9 Verification of
parameter Data
Item File is
achieved.

6.6.b 6.6 A,B,C Not applicable

10 Formal analysis
cases and
procedures are
correct.

FM.6.3.6.a
FM.6.3.6.b

FM.6.3.6 A, B, C Polyspace, DO Qualification
Kit

11 Formal analysis
results are correct
and discrepancies
explained.

FM.6.3.6.c FM.6.3.6 A, B, C Polyspace, DO Qualification
Kit

12 Requirements
formalization is
correct.

FM.6.3.i FM.6.3.i A, B, C Polyspace, DO Qualification
Kit

13 Formal method is
correctly justified
and appropriate.

FM.6.2.1 FM.6.2.1.a
FM.6.2.1.b
FM.6.2.1.c

A, B, C, D Polyspace, DO Qualification
Kit

2-36

Verification of Coding and Integration Process

The following sections describe in more detail the potential impacts for each
of the verification of coding and integration process objectives when using
Model-Based Design, if applicable, as compared to traditional development.

Source Code Complies with Low-Level Requirements
Compliance to low-level requirements may be verified using Simulink Code
Inspector, which verifies that the source code complies with the requirements
in the model.

Simulink Code Inspector may be qualified using the DO Qualification Kit
product.

Source Code Complies with Software Architecture
Compliance to software architecture may be verified using Simulink Code
Inspector, which verifies that the source code complies with the architecture
defined in the model.

For hand-written code, Polyspace is able to prove adherence to software,
because it automatically builds global data dictionary and identification of
shared data reading and writing accesses. Polyspace is also able to prove
adherence to software architecture, because it automatically builds the
application call tree.

Simulink Code Inspector and the Polyspace products for C/C++ may be
qualified using the DO Qualification Kit product.

Source Code Is Verifiable
Verifiability of the code may be verified using Simulink Code Inspector, which
verifies compliance with the model, and since the model is verifiable, the
code is also verifiable. The Polyspace products for C/C++ can assist in the
identification of unreachable, and therefore nonverifiable, code. Polyspace is
also able to find unreachable code, either hand-written or generated from
a model.

Simulink Code Inspector and the Polyspace products for C/C++ may be
qualified using the DO Qualification Kit product.

2-37

2 DO-178C Software Life Cycle

Source Code Conforms to Standards
Standards compliance of source code may be verified using the MISRA C,
MISRA C++, or JSF++ rules checker in the Polyspace products for C/C++.
The MISRA C checker works with the Simulink product. Polyspace is also
able to determine the cyclomatic complexity of the code, which is typically
also included in the coding standard.

The Polyspace products for C/C++ may be qualified using the DO Qualification
Kit product.

Source Code Is Traceable to Low-Level Requirements
Traceability of source code to low-level requirements may be verified using
Simulink Code Inspector, which verifies the traceability between the model
and code and provides a traceability report.

Simulink Code Inspector may be qualified tool using the DO Qualification
Kit product.

Source Code Is Accurate and Consistent
Accuracy and consistency of source code may be verified using Simulink
Code Inspector, which verifies the accuracy and consistency with respect
to the model.

The Polyspace products for C/C++ have the capability to identify run-time
errors, such as potential underflow, overflow, divide by zero, etc. The
Polyspace products for C/C++ also have the capability to detect uninitialized
variables and constants.

Simulink Code Inspector and the Polyspace products for C/C++ may be
qualified using the DO Qualification Kit product.

Output of Software Integration Process Is Complete
and Correct
Because the integration process is outside of the scope of Model-Based Design,
the integration process may be verified using traditional methods.

2-38

Verification of Coding and Integration Process

Parameter Data Item File Is Correct and Complete
Because the Parameter Data Item File verification process is outside the
scope of Model-Based Design, verify the Parameter Data Item File through
traditional methods.

Verification of Parameter Data Item File Is Achieved
Because the Parameter Data Item File verification process is outside the
scope of Model-Based Design, verify the Parameter Data Item File through
traditional methods.

Formal Analysis Cases and Procedures Are Correct
This is shown through the qualification of Polyspace and the justification
of Abstract Interpretation.

Formal Analysis Results Are Correct and
Discrepancies Explained
This is accomplished through the review of the Polyspace Run Time Error
results report. Any discrepancies must be explained and justified.

Requirements Formalization Is Correct
This is shown through the qualification of Polyspace and the justification
of Abstract Interpretation.

Formal Method Is Correctly Justified and Appropriate
The DO Qualification Kit: Polyspace Client/Server for C/C++ Theoretical
Foundation justifies the soundness of the Abstract Interpretation method
used by Polyspace.

2-39

2 DO-178C Software Life Cycle

Testing of Outputs of Integration Process
The following table contains a summary of the testing of outputs of integration
process objectives from DO-178C and DO-333, including the objective,
applicable DO-178C and DO-333 reference sections, and software levels
applicable to the objective. The table also describes the available Model-Based
Design tools for satisfying the objectives.

Table A-6: Testing of Outputs of Integration Process

Objective Ref
Sections

Activity
Ref
Sections

Software
Levels

Available Products for
Model-Based Design

1 Executable Object Code
complies with high-level
requirements.

6.4.a
FM.6.7.a
FM.6.7.c

6.4.2
6.4.2.1
6.4.3
6.5
FM.6.7
FM.6.5

A, B, C, D SystemTest, SimulinkDesign
Verifier, Embedded Coder
— IDE Link, Polyspace, DO
Qualification Kit

2 Executable Object Code
is robust with high-level
requirements.

6.4.b
FM.6.7.b
FM.6.7.c

6.4.2
6.4.2.2
6.4.3
6.5
FM.6.7
FM.6.5

A, B, C, D SystemTest, SimulinkDesign
Verifier, Embedded Coder
— IDE Link, Polyspace, DO
Qualification Kit

3 Executable Object Code
complies with low-level
requirements.

6.4.c
FM.6.7.d
FM.6.7.c

6.4.2
6.4.2.1
6.4.3
6.5
FM.6.7
FM.6.5

A, B, C SystemTest, SimulinkDesign
Verifier, Embedded Coder
— IDE Link, Polyspace, DO
Qualification Kit

2-40

Testing of Outputs of Integration Process

Table A-6: Testing of Outputs of Integration Process (Continued)

Objective Ref
Sections

Activity
Ref
Sections

Software
Levels

Available Products for
Model-Based Design

4 Executable Object Code
is robust with low-level
requirements.

6.4.d
FM.6.7.b
FM.6.7.c

6.4.2
6.4.2.2
6.4.3
6.5
FM.6.7
FM.6.5

A, B, C SystemTest, SimulinkDesign
Verifier, Embedded Coder
— IDE Link, Polyspace, DO
Qualification Kit

5 Executable Object Code
is compatible with target
computer.

6.4.e 6.4.1.a
6.4.3.a

A, B, C, D Embedded Coder — IDE
Link

The following sections describe in more detail the potential impacts for each
testing of outputs of integration process objective when using Model-Based
Design, if applicable, as compared to traditional development.

Executable Object Code Complies with High-Level
Requirements
The executable object code may be verified by reusing the same test cases that
are used to verify the models. During execution of the model verification tests,
using the SystemTest product, the inputs and outputs of each model under
test can be logged and saved for use in verifying the executable object code.

In the case where a Specification Model exists, the Simulink Design Verifier
product may be used to generate high-level tests from the Specification Model.
These test cases can be run on the Design Model and the executable object
code, and the results compared to the expected results from the Specification
Model. The comparison is used to demonstrate that the executable object code
complies with the high-level requirements.

The executable object code may be tested on a target processor or DSP using
the IDE Link capability of the Embedded Coder product. The SystemTest
product may be used to execute these tests and compare the test results to
expected results.

2-41

2 DO-178C Software Life Cycle

When used for pass and fail determination, the Limit Check element
capability within the SystemTest product may be qualified as a verification
tool using the DO Qualification Kit product.

The Polyspace products for C/C++ may also be used to satisfy this objective by
verifying the source code using abstract interpretation. Some errors detected
by the Polyspace products for C/C++ may not be detected during traditional
dynamic testing.

The Polyspace products for C/C++ help to exhaustively identify:

• Uninitialized variables

• Parameter passing errors

• Data corruption, especially global data

• Inadequate, end-to-end numerical resolution

• Detection of arithmetic faults

• Detection of violation of array limits

The Polyspace products for C/C++ help to partially identify:

• Incorrect initialization of variables and constants

• Incorrect initialization of variables and constants leading to an underflow
or overflow

• Global data corruption of shared variables without protection mechanism

• Incorrect sequencing of events and operations

• Detection of loops leading to run-time error

• Detection of incorrect logic decision leading to unreachable code or run-time
errors

The Polyspace products for C/C++ may be qualified as a verification tool using
the DO Qualification Kit product.

2-42

Testing of Outputs of Integration Process

Executable Object Code Is Robust with High-Level
Requirements
Robustness tests should be developed against the models and may be done
using the SystemTest product. The robustness of the executable object
code may be verified by reusing the same test cases that are used to verify
robustness of the models. During execution of the model verification tests,
using the SystemTest product, the inputs and outputs of each model under
test can be logged and saved for use in verifying the executable object code.

In the case where a Specification Model exists, the Simulink Design Verifier
product may be used to generate robustness tests from the Specification
Model. These test cases can be run on the Design Model and the executable
object code, and the results compared to the expected results from the
Specification Model. The comparison demonstrates that the executable
object code is robust with the high-level requirements. For robustness test
cases, Test Condition and Test Objective blocks may be used to assist in
the definition of test cases that exercise the object code outside of normal
boundary conditions.

The executable object code may be tested on a target processor or DSP using
the IDE Link capability of the Embedded Coder product. The SystemTest
product may be used to execute these tests and compare the test results to
expected results.

When used for pass and fail determination, the Limit Check element
capability within the SystemTest product may be qualified as a verification
tool using the DO Qualification Kit product.

The Polyspace products for C/C++ may also be used to satisfy this objective by
verifying the source code using abstract interpretation. Some of the errors
detected by the Polyspace products for C/C++ may not be detected during
traditional dynamic testing.

The Polyspace products for C/C++ help to partially identify:

• Incorrect initialization of variables and constants

• Incorrect initialization of variables and constants leading to an underflow
or overflow

2-43

2 DO-178C Software Life Cycle

• Detection of loops leading to run-time error

• Detection of overflows

• Detection of certain run-time errors

The Polyspace products for C/C++ may be qualified as a verification tool using
the DO Qualification Kit product.

Executable Object Code Complies with Low-Level
Requirements
The Simulink Design Verifier product may be used to generate low-level tests
from the model. These test cases can be run on the model and the executable
object code, and the results compared. The comparison is used to demonstrate
that the executable object code complies with the low-level requirements.

The executable object code may be tested on a target processor or DSP using
the IDE Link capability of the Embedded Coder product. The SystemTest
product may be used to execute these tests and compare the test results to
expected results.

When used for pass and fail determination, the Limit Check element
capability within the SystemTest product may be qualified as a verification
tool using the DO Qualification Kit product.

The Polyspace products for C/C++ may also be used to satisfy this objective by
verifying the source code using abstract interpretation. Some of the errors
detected by the Polyspace products for C/C++ may not be detected during
traditional dynamic testing.

The Polyspace products for C/C++ help to exhaustively identify:

• Uninitialized variables

• Parameter passing errors

• Data corruption, especially global data

• Inadequate, end-to-end numerical resolution

• Detection of arithmetic faults

2-44

Testing of Outputs of Integration Process

• Detection of violation of array limits

The Polyspace products for C/C++ help to partially identify:

• Incorrect initialization of variables and constants

• Incorrect initialization of variables and constants leading to an underflow
or overflow

• Global data corruption of shared variables without protection mechanism

• Incorrect sequencing of events and operations

• Detection of loops leading to run-time error

• Detection of incorrect logic decision leading to unreachable code or run-time
errors

The Polyspace products for C/C++ may be qualified as a verification tool using
the DO Qualification Kit product.

Alternatively, verification against the low-level requirements may be
eliminated, if requirements based coverage and structural coverage are
achieved using the high-level requirements based tests (for example, software
integration tests). The following guidance is provided in section 6.4 of
DO-178C:

If a test case and its corresponding test procedure are developed and
executed for hardware/software integration testing or software integration
testing and satisfy the requirements-based coverage and structural coverage,
it is not necessary to duplicate the test for low-level testing. Substituting
nominally equivalent low-level tests for high-level tests may be less effective
due to the reduced amount of overall functionality tested.

Executable Object Code Is Robust with Low-Level
Requirements
The Simulink Design Verifier product may be used to generate robustness
tests from the model. These test cases can be run on the model and
the executable object code, and the results compared. The comparison
demonstrates that the executable object code is robust with the low-level
requirements. For robustness test cases, Test Condition and Test Objective

2-45

2 DO-178C Software Life Cycle

blocks may be used to assist in the definition of test cases that exercise the
object code outside of normal boundary conditions.

The executable object code may be tested on a target processor or DSP using
the IDE Link capability of the Embedded Coder product. The SystemTest
product may be used to execute these tests and compare the test results to
expected results.

When used for pass and fail determination, the Limit Check element
capability within the SystemTest product may be qualified as a verification
tool using the DO Qualification Kit product.

The Polyspace products for C/C++ may also be used to satisfy this objective by
verifying the source code using abstract interpretation. Some of the errors
detected by the Polyspace products for C/C++ may not be detected during
traditional dynamic testing.

The Polyspace products for C/C++ help to partially identify:

• Incorrect initialization of variables and constants

• Incorrect initialization of variables and constants leading to an underflow
or overflow

• Detection of loops leading to run-time error

• Detection of overflows

• Detection of certain run-time errors

The Polyspace products for C/C++ may be qualified as a verification tool using
the DO Qualification Kit products.

Executable Object Code Is Compatible with Target
Computer
The executable object code may be evaluated for stack usage, memory usage,
and execution time on a target processor or DSP using the IDE Link capability
of the Embedded Coder product.

2-46

Testing of Outputs of Integration Process

Other aspects of hardware compatibility such as interrupt handling, resource
contention, hardware interfaces, partitioning, etc., must be verified using
traditional methods.

2-47

2 DO-178C Software Life Cycle

Verification of Verification Process Results
The following table contains a summary of the verification of verification
process results objectives from DO-178C, DO-331, and DO-333 including
the objective, applicable DO-178C, DO-331, and DO-333 reference sections,
and software levels applicable to the objective. The table also describes
the available Model-Based Design tools that may be used in satisfying the
objectives.

Table A-7: Verification of Verification Process Results

Objective Ref Sections Activity Ref
Sections

Software
Levels

Available
Products for
Model-Based
Design1 Test procedures are

correct.
6.5.4.b 6.4.5 A, B, C Simulink

Verification and
Validation, DO
Qualification
Kit

2 Test results are correct
and discrepancies
explained.

6.5.4.c 6.4.5 A, B, C SystemTest, DO
Qualification
Kit

3 Test coverage
of high-level
requirements is
achieved.

6.4.4.a 6.4.4.1
MB.6.8.2.a

A, B, C, D Simulink
Verification and
Validation, DO
Qualification
Kit

4 Test coverage of
low-level requirements
is achieved.

6.4.4.b 6.4.4.1
MB.6.7

A, B, C Simulink
Verification and
Validation, DO
Qualification
Kit

5 Test coverage
of software
structure (modified
condition/decision) is
achieved.

6.4.4.c 6.4.4.2.a
6.4.4.2.b
6.4.4.2.d
6.4.4.3
MB.6.8.2.a

A Not applicable
(Simulation
credit for testing
EOC is not
taken)

2-48

Verification of Verification Process Results

Table A-7: Verification of Verification Process Results (Continued)

Objective Ref Sections Activity Ref
Sections

Software
Levels

Available
Products for
Model-Based
Design6 Test coverage of

software structure
(decision coverage) is
achieved.

6.4.4.c 6.4.4.2.a
6.4.4.2.b
6.4.4.2.d
6.4.4.3
MB.6.8.2.a

A, B Not applicable
(Simulation
credit for testing
EOC is not
taken)

7 Test coverage of
software structure
(statement coverage) is
achieved.

6.4.4.c 6.4.4.2.a
6.4.4.2.b
6.4.4.2.d
6.4.4.3
MB.6.8.2.a

A, B, C Not applicable
(Simulation
credit for testing
EOC is not
taken)

8 Test coverage of
software structure
(data coupling and
control coupling) is
achieved.

6.4.4.d 6.4.4.2.c
6.4.4.2.d
6.4.4.3
MB.6.8.2.a

A, B, C Not applicable
(Simulation
credit for testing
EOC is not
taken)

9 Verification of
additional code that
cannot be traced
to Source Code is
achieved.

6.4.4.c 6.4.4.2.b A Not applicable
(Simulation
credit for testing
EOC is not
taken)

MB
10

Simulation cases are
correct

MB.6.8.3.2.a MB.6.8.3.2 A, B, C Not applicable
(Simulation
credit for testing
EOC is not
taken)

MB
11

Simulation procedures
are correct

MB.6.8.3.2.b MB.6.8.3.2 A, B, C Not applicable
(Simulation
credit for testing
EOC is not
taken)

2-49

2 DO-178C Software Life Cycle

Table A-7: Verification of Verification Process Results (Continued)

Objective Ref Sections Activity Ref
Sections

Software
Levels

Available
Products for
Model-Based
DesignMB

12
Simulation results
are correct and
discrepancies
explained

MB.6.8.3.2.c MB.6.8.3.2 A, B, C Not applicable
(Simulation
credit for testing
EOC is not
taken)FM 1 Formal analysis cases

and procedures are
correct

FM.6.7.2.a
FM.6.7.2.b

FM.6.7.2 C Polyspace, DO
Qualification
Kit

FM 2 Formal analysis
results are correct
and discrepancies
explained

FM.6.7.2.c FM.6.7.2 A, B, C Polyspace, DO
Qualification
Kit

FM 3 Coverage of high-level
requirements is
achieved

FM.6.7.1.a FM.6.7.1.1 A, B, C, D Not Applicable

FM 4 Coverage of low-level
requirements is
achieved

FM.6.7.1.a FM.6.7.1.1 A, B, C Not Applicable

FM
5-8

Verification coverage
of software structure is
achieved

FM.6.7.1.c FM.6.7.1.2
FM.6.7.1.3
FM.6.7.1.4
FM.6.7.1.5

Polyspace, DO
Qualification
Kit

2-50

Verification of Verification Process Results

Table A-7: Verification of Verification Process Results (Continued)

Objective Ref Sections Activity Ref
Sections

Software
Levels

Available
Products for
Model-Based
DesignFM 9 Verification of property

preservation between
source and object code

FM.6.7.f FM.6.7 A, B, C, D Polyspace, DO
Qualification
Kit

FM
10

Formal method is
correctly defined,
justified, and
appropriate

FM.6.2.1 FM.6.2.1.a
FM.6.2.1.b
FM.6.2.1.c

A, B, C, D Polyspace, DO
Qualification
Kit

The following sections describe in more detail the potential impacts for
each of the verification of verification process results objective when using
Model-Based Design, if applicable, as compared to traditional development.

Test Procedures Are Correct
Correctness of the test procedures from the higher-level requirements may
be verified by reviewing the test procedures. The Simulink Verification
and Validation product may assist in test procedure reviews by providing
traceability from the test cases to the requirements, including hyperlinks to
the requirements in the higher-level requirements document.

Completeness of the test cases generated by the Simulink Design Verifier
product may be verified by executing the test cases on the Simulink model
while measuring model coverage during simulation. The expected results
produced by Simulink may be verified by reviewing the results.

The model coverage capability in the Simulink Verification and Validation
product may be qualified as a verification tool using the DO Qualification
Kit product.

Test Results Are Correct and Discrepancies Explained
Correctness of the test results may be verified by reviewing the test results.
If using SystemTest in conjunction with PIL mode (Processor in-the-loop)

2-51

2 DO-178C Software Life Cycle

in Simulink, then the Limit Check Element within SystemTestcan be
used for Pass/Fail verification of the results. As an alternative, develop a
processor-in-the-loop test platform for the executable object code that could be
qualified as a verification tool in order to determine pass and fail status of
the results.

Test Coverage of High-Level Requirements Is
Achieved
Test coverage of high-level software requirements may be verified by
reviewing the test cases and traceability to the high-level requirements. The
Simulink Verification and Validation product can be used to trace the test
cases to the high-level requirements, providing the capability to assist in
verifying that each requirement has associated test cases.

Test Coverage of Low-Level Requirements Is Achieved
Test coverage of low-level software requirements may be verified using
the Simulink Verification and Validation model coverage report during
execution of the high-level requirements based tests. The model coverage
report provides data to assist in proving that low-level requirements are fully
covered during high-level testing.

The model coverage capability in the Simulink Verification and Validation
product may be qualified as a verification tool using the DO Qualification
Kit product.

Test Coverage of Software Structure (Modified
Condition/Decision) Is Achieved
Modified condition and decision coverage of the software structure may be
verified using a commercial, off-the-shelf structural coverage analysis tool.
This analysis is accomplished during the execution of the requirements
based tests described in “Executable Object Code Complies with High-Level
Requirements” on page 2-41.

If requirements-based test cases are developed at the model level and reused
for testing of the executable object code, the model coverage capability
of the Simulink Verification and Validation product may be used during

2-52

Verification of Verification Process Results

development of the requirements based test cases. Using the capability helps
predict the effectiveness of the test cases in providing structural coverage
for the generated code.

Test Coverage of Software Structure (Decision
Coverage) Is Achieved
Decision coverage of the software structure may be verified using a
commercial, off-the-shelf structural coverage analysis tool. This analysis is
accomplished during the execution of the requirements based tests described
in “Executable Object Code Complies with High-Level Requirements” on page
2-41.

If requirements-based test cases are developed at the model level and reused
for testing of the executable object code, the model coverage capability may
be used during development of the requirements based test cases. Using the
tool helps predict the effectiveness of the test cases in providing structural
coverage for the generated code.

Test Coverage of Software Structure (Statement
Coverage) Is Achieved
Statement coverage of the software structure may be verified using a
commercial, off-the-shelf structural coverage analysis tool. This analysis is
accomplished during the execution of the requirements based tests described
in “Executable Object Code Complies with High-Level Requirements” on page
2-41.

If requirements-based test cases are developed at the model level and reused
for testing of the executable object code, then the model coverage capability
may be used during development of the requirements based test cases. Using
the tool helps predict the effectiveness of the test cases in providing structural
coverage for the generated code.

Test Coverage of Software Structure (Data Coupling
and Control Coupling) Is Achieved
Because the data coupling and control is outside of the scope of code generated
using Model-Based Design, data coupling and control may be verified using

2-53

2 DO-178C Software Life Cycle

traditional methods. The test coverage for data coupling and control involves
verification of the data interfaces to and from the automatically generated
code and the calling sequence of the automatically generated code in relation
to other code modules.

Verification of Additional Code That Cannot Be Traced
to Source Code Is Achieved
Because the additional object code verification process is outside the scope
of Model-Based Design, verify additional object code through traditional
methods. However, a sample model of Simulink and Stateflow elements used
by a project may be used to generate code that provides a sample of source
code for evaluating the traceability to the object code.

Simulation Cases Are Correct
This object is only applicable when credit is taken for simulation in place of
executable object code testing. This is not a recommended workflow due to
the difficulty of demonstrating equivalence between a host based simulation
and the target code.

Simulation Procedures Are Correct
This object is only applicable when credit is taken for simulation in place of
executable object code testing. This is not a recommended workflow due to
the difficulty of demonstrating equivalence between a host based simulation
and the target code.

Simulation Results Are Correct and Discrepancies
Explained
This object is only applicable when credit is taken for simulation in place of
executable object code testing. This is not a recommended workflow due to
the difficulty of demonstrating equivalence between a host based simulation
and the target code.

2-54

Verification of Verification Process Results

Formal Analysis Cases and Procedures Are Correct
This is shown through the qualification of Polyspace and the justification
of Abstract Interpretation.

Formal Analysis Results Are Correct and
Discrepancies Explained
This is accomplished through the review of the Polyspace Run Time Error
results report. Any discrepancies must be explained and justified.

Coverage of High-Level Requirements Is Achieved
Not applicable, Polyspace does not support this objective.

Coverage of Low-Level Requirements Is Achieved
Not applicable, Polyspace does not support this objective.

Verification Coverage of Software Structure Is
Achieved
Polyspace may be used to find unreachable code, whether it is hand written
or generated from a model. The structural coverage and data coupling and
control coverage objectives must still be achieved during testing, as described
in previous sections.

Verification of Property Preservation Between Source
And Object Code
Polyspace analysis is only used to take credit for detection of specific error
types. Testing of the executable object code against the high- and low-level
requirements is still required to fully satisfy the objectives for executable
object code. In order to demonstrate preservation of properties between
the source and object code, a traceability analysis between the source and
object code needs to be accomplished to demonstrate that additional code, not
directly traceable to source code, is not inserted. Additionally, tests can be
used to show that properties are preserved between low-level requirements,
source code, and executable object code.

2-55

2 DO-178C Software Life Cycle

Formal Method Is Correctly Justified And Appropriate
The DO Qualification Kit: Polyspace Client/Server for C/C++ Theoretical
Foundation justifies the soundness of the Abstract Interpretation method
used by Polyspace.

2-56

Software Configuration Management Process

Software Configuration Management Process
The following table contains a summary of the configuration management
process objectives from DO-178C, including the objective, applicable DO-178C
reference sections, and software levels applicable to the objective. The table
also describes the potential impact to the process when using Model-Based
Design.

Table A-8: Software Configuration Management Process

Objective Ref
Sections

Activity
Ref
Sections

Software
Levels

Model-Based Design
Process Impact

1 Configuration
items are
identified.

7.2.a 7.2.1 A, B, C, D No impact

2 Baselines and
traceability are
established.

7.1.b 7.2.2 A, B, C, D Use of Requirements
Management Interface (RMI)
and traditional baseline
establishment

3 Problem reporting,
change control,
change review,
and configuration
status accounting
are established.

7.1.c
7.1.d
7.1.e
7.1.f

7.2.3
7.2.4
7.2.5
7.2.6

A, B, C, D No impact

4 Archive, retrieval,
and release are
established.

7.1.g 7.2.7 A, B, C, D No impact

5 Software load
control is
established.

7.1.h 7.4 A, B, C, D No impact

6 Software life cycle
environment
control is
established.

7.1.i 7.5 A, B, C, D No impact

2-57

2 DO-178C Software Life Cycle

The following sections describe in more detail the potential impacts for each
configuration management process objective when using Model-Based Design,
if applicable, as compared to traditional development.

Configuration Items Are Identified
For projects using Model-Based Design, throughout the project, the following
artifacts may have to be configured and identified:

• High-level requirements (level above the models)

• Models

• System Design Description and trace reports

• Model Advisor reports

• Automatically generated code

• Code Inspection reports

• Polyspace Code Standards reports

• Polyspace Run-Time Error reports

• Model test harnesses

• Model test scripts

• SystemTest files

• Model test results reports

• Model coverage reports

• Object code structural coverage reports

These artifacts are in addition to, or substitute for, traditional configured
items.

Baselines and Traceability Are Established
Establishing baselines and traceability is the same as for traditional projects.
Part of the traceability may be covered by the Requirements Management
Interface (RMI).

2-58

Software Configuration Management Process

Problem Reporting, Change Control, Change Review,
and Configuration Status Accounting Are Established
Establishing problem reporting, change control, change review, and
configuration status accounting is the same as for traditional projects.

Archive, Retrieval, and Release Are Established
Establishing archive, retrieval, and release is the same as for traditional
projects. The version of the Model-Based Design tools used on the project may
have to be archived.

Software Load Control Is Established
Establishing software load control is the same as for traditional projects.

Software Life Cycle Environment Control Is
Established
Establishing software life cycle environment control is the same as for
traditional projects.

2-59

2 DO-178C Software Life Cycle

Software Quality Assurance Process
The following table contains a summary of the software quality assurance
process objectives from DO-178C, including the objective, applicable DO-178C
reference sections, and software levels applicable to the objective is applicable
to. The table also describes the potential impact to the process when using
Model-Based Design.

Table A-9: Software Quality Assurance Process

Objective Ref
Sections

Activity
Ref
Sections

Software
Levels

Model-Based Design
Process Impact

1 Assurance is obtained
that software plans
and standards are
developed and reviewed
for compliance with
DO-178C and for
consistency.

8.1.a 8.2.b
8.2.h
8.2.i

A, B, C No impact

2 Assurance is obtained
that software life cycle
processes comply with
approved software plans.

8.1.b 8.2.a
8.2.c
8.2.d
8.2.f
8.2.h
8.2.i

A, B,C,D No impact

3 Assurance is obtained
that software life cycle
processes comply with
approved software
standards.

8.1b 8.2.a
8.2.c
8.2.d
8.2.f
8.2.h
8.2.i

A, B, C No impact

2-60

Software Quality Assurance Process

Table A-9: Software Quality Assurance Process (Continued)

Objective Ref
Sections

Activity
Ref
Sections

Software
Levels

Model-Based Design
Process Impact

4 Assurance is obtained
that transition criteria
for the software life cycle
processes are satisfied.

8.1.c 8.2.e
8.2.h
8.2.i

A,B,C

5 Assurance is obtained
that software conformity
review is conducted.

8.1.d 8.2.g
8.2.h
8.3

A,B,C,D

The following sections describe in more detail the potential impacts for each
software quality assurance process objective when using Model-Based Design,
if applicable, as compared to traditional development.

Assurance Is Obtained That Software Plans and
Standards are Developed and Reviewed for
Compliance With DO-178C and For Consistency
Obtaining assurance that software plans and standards are developed and
reviewed for compliance to DO-178C for consistency is the same as obtaining
it for traditional projects.

Assurance is Obtained That Software Life Cycle
Processes Comply with Approved Software Plans
Obtaining assurance that the software life cycle processes comply with
approved software plans is the same as obtaining it for traditional projects.

Assurance is Obtained That Software Life Cycle
Processes Comply with Approved Software
Standards
Obtaining assurance that the software life cycle processes comply with
approved software plans is the same as obtaining it for traditional projects.

2-61

2 DO-178C Software Life Cycle

Assurance is Obtained That Transition Criteria for the
Software Life Cycle Processes are Satisfied
Obtaining assurance that transition criteria for the software life cycle
processes are satisfied is the same as obtaining it for traditional projects.

Assurance is Obtained That Software Conformity
Review is Conducted
Completing software conformity review is the same as completing it for
traditional projects.

2-62

Certification Liaison Process

Certification Liaison Process
The following table contains a summary of the certification liaison process
objectives from DO-178C, including the objective, applicable DO-178C
reference sections, and software levels applicable to the objective. The table
also describes the potential impact to the process when using Model-Based
Design.

Table A-10: Certification Liaison Process

Objective Ref
Sections

Activity
Ref
Sections

Software
Levels

Model-Based Design
Process Impact

1 Communication and
understanding between
the applicant and the
certification authority is
established.

9.a 9.1.b
9.1.c

A, B, C, D No impact

2 The means of compliance
is proposed and
agreement with the Plan
for Software Aspects of
Certification is obtained.

9.b 9.1.a
9.1.b
9.1.c

A, B, C, D No impact

3 Compliance
substantiation is
provided.

9.c 9.2.a
9.2.b
9.2.c

A, B, C, D No mpact

The following sections describe in more detail the potential impact for each
certification liaison process objective when using Model-Based Design, if
applicable, as compared to traditional development.

Communication and Understanding Between
the Applicant and the Certification Authority Is
Established
Establishing communication and understanding between the applicant and
the certification authority is the same as for traditional projects.

2-63

2 DO-178C Software Life Cycle

The Means of Compliance Is Proposed and
Agreement with the Plan for Software Aspects of
Certification is Obtained
Proposing the means of compliance and obtaining agreement with the Plan
for Software Aspects of Certification (PSAC) is the same as for traditional
projects.

Compliance Substantiation Is Provided
Providing compliance substantiation is the same as for traditional projects.

2-64

A

Acronyms

A Acronyms

Acronyms

API Application Programming Interface

CRI Certification Review Item

EASA European Aviation Safety Agency

FAA Federal Aviation Administration

IP Issue Paper

PIL Processor-In-the-Loop

PSAC Plan for Software Aspects of Certification

RMI Requirements Management Interface

RTOS real-time operating system

A-2

B

References

B References

Normative References
The Motor Industry Software Reliability Association. MISRA AC AGC:
Guidelines for the application of MISRA-C:2004 in the context of automatic
code generation, ISBN 978-906400-02-6 (PDF), November 2007. MIRA
Limited, 2004.

SAE International. Guidelines for Development of Civil Aircraft and Systems,
2010.

B-2

Index

IndexA
API 2-21 A-2
application programming interface 2-21 A-2
ARP4754 2-13 B-2

C
code conformance 2-3
code generation report 2-3
code traceability 2-3
code verification 2-3
code verification report 2-37 to 2-38
coding 2-3
coding standards 2-8
compiling 2-3
CRI 2-8 A-2

D
DO Qualification Kit 2-3 2-5 2-8 2-17 2-19 to

2-22 2-24 2-26 to 2-33 2-35 2-37 to 2-38 2-40
to 2-41 2-43 to 2-45 2-51 to 2-52

DO-178C 2-2 to 2-3 2-26 to 2-30 2-44
model-based design workflow 2-3
section 6.1.b 2-26 to 2-30
section 6.4 2-44
software life cycle 2-2

DO-178C/DO-331 checks 2-3 2-19 to 2-22 2-27
to 2-33

E
EASA 2-5 2-8 A-2
Embedded Coder™ 2-3 2-8 2-10 2-14 2-20 2-28

2-32

F
FAA 2-5 2-8 A-2

H
high-level verification 2-3

I
IDE Link 2-3 2-10 2-14 2-40 to 2-41 2-43 to 2-46
IP 2-8 A-2

L
Limit Check element 2-3 2-19 to 2-20 2-22 2-26

to 2-28 2-30 2-32 2-41 2-43 to 2-45
low-level verification 2-3

M
MISRA C® 2-8 2-14 2-38 B-2
Model Advisor 2-3 2-19 to 2-22 2-27 to 2-33
Model Advisor reports 2-58
model coverage 2-3 2-20 2-28 2-32 2-51 to 2-53

2-58
model coverage report 2-3 2-20 2-28 2-32 2-52

2-58
model traceability 2-3
model verification 2-3
modeling 2-3
modeling conformance 2-3
modeling standard 2-5 2-8 2-13 to 2-14

P
PIL 2-51 A-2
Polyspace® products for C/C++ 2-3 2-8 2-35 2-37

to 2-38 2-40 to 2-41 2-43 to 2-45
processor-in-the-loop 2-51 A-2
PSAC 2-9 2-63 to 2-64 A-2

R
report

code generation 2-3

Index-1

Index

code verification 2-37 to 2-38
Model Advisor 2-58
model coverage 2-3 2-20 2-28 2-32 2-52 2-58
System Design Description 2-3 2-19 to 2-22

2-26 to 2-33 2-58
traceability 2-38

requirements validation 2-3
RMI 2-3 2-22 2-30 2-57 to 2-58 A-2
RTOS 2-13 2-31 to 2-33 A-2

S
Simulink® 2-3 2-6 2-8 2-10 2-13 to 2-14 2-17 2-19

to 2-20 2-22 2-27 to 2-28 2-30 to 2-31 2-38
2-51

Simulink® Code Inspector™ 2-35 2-37 to 2-38
Simulink® Coder™ 2-3 2-8 2-10 2-14
Simulink® Design Verifier™ 2-3 2-8 2-17 2-19

to 2-20 2-22 2-24 2-26 2-28 2-30 2-40 2-44 to
2-45 2-51

Simulink® Report Generator™ 2-3 2-8 2-17 2-19
to 2-22 2-24 2-26 to 2-33

Simulink® Verification and Validation™ 2-3 2-8
2-17 2-19 to 2-22 2-24 2-26 to 2-33 2-48 2-51
to 2-52

Stateflow® 2-3 2-8 2-10 2-13 to 2-14
System Design Description report 2-3 2-19 to

2-22 2-26 to 2-33 2-58
SystemTest™ 2-3 2-8 2-17 2-19 to 2-20 2-22 2-24

2-26 to 2-28 2-30 2-32 2-40 to 2-41 2-43 to
2-45 2-48 2-58

T
traceability report 2-38
traditional projects 2-58 to 2-59 2-61 to 2-64
traditional verification methods 2-31 to 2-33

2-38 to 2-39 2-46 2-53 to 2-54

Index-2

	toc
	Tool Description
	Overview of the Tools
	Independence of the Tools
	Model and Source Code Development and Verification
	Potential Tool Errors and Detection
	Object Code Development and Verification
	Test Case Development

	DO-178C Software Life Cycle
	DO-178C Software Life Cycle Overview
	Model-Based Design Workflow in DO-178C
	Software Planning Process
	Activities of the Software Lifecycle Processes are Defined
	Software Life Cycle is Defined
	Software Life-Cycle Environment Is Selected and Defined
	Additional Considerations are Addressed
	Software Development Standards are Defined
	Software Plans Comply with DO-178C
	Development and Revision of Software Plans are Coordinated

	Software Development Process
	High-Level Requirements are Developed
	Derived High-Level Requirements are Defined and Provided to Syst
	Software Architecture Is Developed
	Low-Level Requirements are Developed
	Derived Low-Level Requirements are Defined and Provided to the S
	Source Code Is Developed
	Executable Object Code and Parameter Data Item Files are Produce
	Specification Model Elements That Do Not Contribute to Implement
	Design Model Elements That Do Not Contribute to Implementation o
	Design Model Elements That Do Not Contribute to Implementation o

	Verification of Requirements Process
	High-Level Requirements Comply with System Requirements
	High-Level Requirements Are Accurate and Consistent
	High-Level Requirements Are Compatible withTarget Computer
	High-Level Requirements Are Verifiable
	High-Level Requirements Conform to Standards
	High-Level Requirements Are Traceable to System Requirements
	Algorithms Are Accurate
	Simulation Cases Are Correct
	Simulation Procedures Are Correct
	Simulation Results Are Correct and Discrepancies Explained

	Verification of Design Process
	Low-Level Requirements Comply with High-Level Requirements
	Low-Level Requirements Are Accurate and Consistent
	Low-Level Requirements Are Compatible with Target Computer
	Low-Level Requirements Are Verifiable
	Low-Level Requirements Conform to Standards
	Low-Level Requirements Are Traceable to High-Level Requirements
	Algorithms Are Accurate
	Software Architecture Is Compatible with High-Level Requirements
	Software Architecture Is Consistent
	Software Architecture Is Compatible with Target Computer
	Software Architecture Is Verifiable
	Software Architecture Conforms to Standards
	Software Partitioning Integrity Is Confirmed
	Simulation Case Are Correct
	Simulation Procedures Are Correct
	Simulation Results Are Correct and Discrepancies Explained

	Verification of Coding and Integration Process
	Source Code Complies with Low-Level Requirements
	Source Code Complies with Software Architecture
	Source Code Is Verifiable
	Source Code Conforms to Standards
	Source Code Is Traceable to Low-Level Requirements
	Source Code Is Accurate and Consistent
	Output of Software Integration Process Is Complete and Correct
	Parameter Data Item File Is Correct and Complete
	Verification of Parameter Data Item File Is Achieved
	Formal Analysis Cases and Procedures Are Correct
	Formal Analysis Results Are Correct and Discrepancies Explained
	Requirements Formalization Is Correct
	Formal Method Is Correctly Justified and Appropriate

	Testing of Outputs of Integration Process
	Executable Object Code Complies with High-Level Requirements
	Executable Object Code Is Robust with High-Level Requirements
	Executable Object Code Complies with Low-Level Requirements
	Executable Object Code Is Robust with Low-Level Requirements
	Executable Object Code Is Compatible with Target Computer

	Verification of Verification Process Results
	Test Procedures Are Correct
	Test Results Are Correct and Discrepancies Explained
	Test Coverage of High-Level Requirements Is Achieved
	Test Coverage of Low-Level Requirements Is Achieved
	Test Coverage of Software Structure (Modified Condition/Decision
	Test Coverage of Software Structure (Decision Coverage) Is Achie
	Test Coverage of Software Structure (Statement Coverage) Is Achi
	Test Coverage of Software Structure (Data Coupling and Control C
	Verification of Additional Code That Cannot Be Traced to Source
	Simulation Cases Are Correct
	Simulation Procedures Are Correct
	Simulation Results Are Correct and Discrepancies Explained
	Formal Analysis Cases and Procedures Are Correct
	Formal Analysis Results Are Correct and Discrepancies Explained
	Coverage of High-Level Requirements Is Achieved
	Coverage of Low-Level Requirements Is Achieved
	Verification Coverage of Software Structure Is Achieved
	Verification of Property Preservation Between Source And Object
	Formal Method Is Correctly Justified And Appropriate

	Software Configuration Management Process
	Configuration Items Are Identified
	Baselines and Traceability Are Established
	Problem Reporting, Change Control, Change Review, and Configurat
	Archive, Retrieval, and Release Are Established
	Software Load Control Is Established
	Software Life Cycle Environment Control Is Established

	Software Quality Assurance Process
	Assurance Is Obtained That Software Plans and Standards are Deve
	Assurance is Obtained That Software Life Cycle Processes Comply
	Assurance is Obtained That Software Life Cycle Processes Comply
	Assurance is Obtained That Transition Criteria for the Software
	Assurance is Obtained That Software Conformity Review is Conduct

	Certification Liaison Process
	Communication and Understanding Between the Applicant and the Ce
	The Means of Compliance Is Proposed and Agreement with the Plan
	Compliance Substantiation Is Provided

	Acronyms
	Acronyms

	References
	Normative References

	Index

	tables
	Table A-1: Software Planning Process
	Table A-2: Software Development Process
	Table A-3: Verification of Requirements Process
	Table A-4: Verification of Design Process
	Table A-5: Verification of Coding and Integration Process
	Table A-6: Testing of Outputs of Integration Process
	Table A-7: Verification of Verification Process Results
	Table A-8: Software Configuration Management Process
	Table A-9: Software Quality Assurance Process
	Table A-10: Certification Liaison Process

